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We consider the general second order recurrence relation (r.r.)

(1) Yatz = 8¥pyy " BV BFO

Let a and b be the roots of the auxiliary polynomial f(x) = XZ -gx+ h
of (1). Using the notation of the classic paper [1] of E. Lucas, we let
Un and Vn be the solutions of (1) defined by Un = (an - bn)/(a - b)
if a#b and U_= na™! if a=b and by vV _=a’+b.

In [3] , D. Jarden defined generalized binomial coefficients by
(2) [m] _ UmUm—l T Urn—j+l ) [m] -1 .

j U, U2 e Uj 0

(We have changed Jarden's notation (Dj) u to I:n;)}) If g=2 and

h =1 then Un =n and n;:l is the ordinary binomial coefficient (m)
Jarden showed that the product z_ of the n-th terms of k -1

sequences satisfying (1) satisfies the k-th order r.r.

k . .

(3) j§0 (-1y) [l;:th(J 1)/2 S
The definition (2) of nj:' for all j and m with 0 £ j £ m obviously
requires that Un #0 fo6r n > 0 since otherwise (2) may involve di-
vision by zero. We call the r.r. (1) ordinary if Un #0 foralln >0
and exceptional if Un =0 for some n >0. In (7) and (8) below we
give an alternate definition of [n: }which is valid in all cases. In [2] ,
D. H. Lehmer considered the exceptional r.r.'s (1) for which g = \/?
and for which f and h arerelatively prime. Lehmer's paper is con-
cerned with divisibility properties of the sequences Un and Vn.

It follows from h # 0 that a #0 and b # 0. It is then clear
from the definition of Un that (1) is exceptional if and only if a # b
and aP = bP for some positive integer p. If (1) is exceptional, a # b
and so every solution of (1) is of the form Y, = clan + czbn. Then
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Yn+p = clan-*‘p + czbner = ap(clan + czbn) = apyn for all n. Conver-
sely, one easily sees that yn+p = apyn for all n and all solutions Vo
of (1) implies that (1) is exceptional.

We show below that the following four conditions are equivalent
to each other and hence to (1) being ordinary:

(a) Either a =b or a™ 7 b* for all n > 0.

(b) Any solution Vo of (1) withtwo differentterms equal to zero

is identically zero.

(c) Forall k 22 the r.r. (3) isthe lowest order r.r. satisfied

by all term by term products of k - 1 sequences satisfying (1).

(d) Every solution of (3) is of the form

_ k-1 k-2 k-3_.2 k-1
(4) oz, = U " 40 Uy tegUy Uy tees T Unyy o
. k-j.j-1 . .
i.e., the sequences U *-U for j=1, ..., k form a basis
n ntl

for the vector space of all solutions of (3).
We shall also establish some identities involving the [r?] , one

of which is the addition formula:

irk,G+1)i/2 . -
(-1’ [§]n Ua, +k-j Ya_+k-j *** Va +k-j ntk-j

1 2 k

j=0

U,...U )2 21>
1 kinta, t...+a, + [k(k+1)/4:|

for Y, and Un satisfying (1) and n and the a's any integers.

If a#b, every solution of (1) is of the form Y, = clan + czbnL

and the term-by-term product of k - 1 sequences satisfying (1) is

given by

k-1 k-2 k-3, 2 k-1
(6) z = cl(a )+ cz(a b)™ + c3(a 15300 S ck(b )n
We therefore let
(7) £ .60 = bx-at e -2 ) Ll (- BT

and define B(] so that
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k
(8) fk(x) = 3 (-I)J[ﬁ]hj(j_l)/z Xk-j
j=0

The[l;]defined by (8) is a generalization of the ; I;E of L. Carlitz [4]
defined by

k

(-0 -at) ... 1-a"Ty = 5 (d0D/2 L
j=0
See especially formulas (6. 3) through (6.16) of [4].)

Then fk(x) is the auxiliary polynomial for the r.r. (3). The lowest

order r.r. satisfied by the z, of (6) is (3) if and only if the numbers

ak—l, ak-zb, e bk—1 are distinct. Since a # 0 and b # 0, this is

equivalent to al # b for j=1, ..., k-1. Hence condition (c) is
equivalent to (a) for a # b.

If a =b, everysolution of (1) is given by Vo = (c, + czn)an, the

1
term-by-term product of k-1 sequences satisfying (1) is of the form

(9) z = (c1 +c2n+... +cn )a )y,

and (3) is the lowest order r.r. satisfied by all the z of form (9).
Thus (c) and (a) are equivalent in this case too. It is also easily seen
that h = a® and [n;]=(r?) ™3 Ghen a = b,
Lemma.

A solution Yy of (1) that is not identically zero has Y, = 0 for

two different values of n if and only if a # b and there is a positive

integer p such that aP = bP,

Proof.
. n .
First let a =b. Then v, = (c1 + czn)a . If Yy = 0= Y, with

u # v, then (Cl + czu)au =0=(c, + czv)av. Since a # 0, it follows

1

that 1 +c2u =0 = c; +CZV, cz(u - v) =0, and so cy = 0. Then ¢y = 0

and y_=0 for all n.
n
Now let a #b. Then Yo = clan + czbn. If Vo = 0= Yy with

u> v, clau + czbu =0 = claV + czbv, and there exists a non-trivial
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solution for the c¢'s if and only if the determinant a’b’ - b'a’ = 0.

This is equivalent to a% V= ptY,

This shows that (a) and (b) are equivalent.
Corollary.

If v. and w_ are solutions of (1) and v_=w_ for two values

n n n n
of n, then v. = w_ for all n.
n n

This follows from the lemma and the fact that v,o- W is also
a solution of (1).

We next consider condition (d). First let (1) be ordinary. Let
z be the term-by-term product of k - 1 solutions of (1). If we can
c such that (4) holds for n=1, 2, ..., k

17ttt S

then the r.r. (3), which is satisfied by the sequences Ui_JUfj-;ll and

z > will make (4) hold for all n. Such c's can be found if the k by k

find constants c¢

determinant D with dij = UIE—JUg_I__l isnotzero. Since(l) is ordinary,

1
each of Ul’ U U, 1is not zero and we can factor Uls—l out of

20 eees Up
the elements of the i-th row of D thus obtaining the Vandermonde de-
terminant E with eij = (Ui_H/Ui)J-l. Then E, and hence D, is not
zero if and only if the ratios Ui+l/Ui are distinct. It is easily seen

that U_, /U_= U, /U, if and onlyif a® “=b%"". This shows that

s+l/ s
{a) implies (d).
. . pP_.pP
If (1) is exceptional, a' = b® for some p > 0 and so Un+p+1/
Un+p = Un+1/Un' Then for k >p, the determinant D is Zeli’(()— .511'1‘??
ithas proportional rows. Itfollowsthatone of the sequences U JUr‘1+l

is a linear combination of the others, first for 1 £n <k and then,
using (3), for all n. This implies that there is a solution of (3) not of
the form (4) and so (d) implies (a).

We now go back to (7) and note that ab = h. Therefore we can

write
£,,00) = [(x—ak+l)(x-bk+1)] [(x—akb)...(x—abk)]
400 = [XZ—(ak+l+bk+1) 4 hk“] [(X-ak‘lh)(x-ak'zbh). ..
k-1
(x-b h)]
(10)  £,,(x) = nX(x? - Vi Xt Rkt £ /)
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where Vn is the general Lucas sequence a™ +p™. Formula (10) im -~

plies the following:

k_] jt2 _ [k+2
(11) [ ] +[J+1J Vit +[J+z]h = [j+2:' ’
m
_ 2 m-j 2m-1
(12) me = I (x -sz_lh +h )
j=1
m
_ m 2 m-j 2m
(13) fymsr = (7B M (- Vb +h“™
=1

We next prove identity (5) when (1) is ordinary by induction on k.
When k =1, (5) becomes

(14) U - hU v

a+1 7 n+1 a’n = Yn+atl

We consider n to be aconstantand let a be the running index. Then
both sides of (14) satisfy (1) and they are equal to one another for a =0
and a = -1 since U= -1/h, U0 = 0, and U, = 1. Hence (14) holds
for all a (and all n) by the Corollary.

Now we assume that (5) holds for k = m-1 and show that this
s eeey @ and n tobecon-
1 m-1
stants and let a be the running index. Both sides of (5) satisfy (1).

implies (5) for k = m. We consider a

When a = 0, (5) becomes Um times the identity for k = m-1 with

each a.j replaced by 1 +aj. When a = -m, (5) reduces to Um
times the identity for k = m-1 using the easily established fact that
U_n = -Unh_n. Hence (5) is true for two values of a and thus true

for all values by the Corollary.

We now turn to identity (5) in the exceptional case. From sym-
metric function theoryand the definitions (7) and (8), it follows that for
fixed h the[J]are polynomials in g. For fixed values of Yo and
V1 and h, the two sides of (5) are then continuous functions of g.
Thus (5) for complex numbers g9 and hO that make (1) exceptional
can be established byhaving g approach g0 (while h is fixed at hO)
through values for which (1)is ordinary. A sufficient condition for (1)
to be ordinary is that Ial # Ib] Any point (g,, hj) is a limit of

points (g, hO) satisfying this sufficient conditionfor (1) to be ordinary.
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A purely algebraic proof of identity (5) in the exceptional case
can'also be given.

Finally we consider the l:m] when (1)is exceptional and g and h

are bothreal. Since aP = bP for some p > 0, ]al = ibl Since a #b
this means that a = -b, g=0, and h=-a~ if a and b are real. In
this case
2 2m-1m 2 2m,m m
£, ()= G+ L ) = - 0T - ((m)T)

and it can then be shown that

5] - e [] - o
[21’121;'1] - 1y hj(Zm—2j+1)(njl), [ZZIEI] - (c1yitm h(m-j)(2j+1)(n;> _
If a and b are complex, we can let a = peie and b = pe-ie with
h= PZ and p >0. Then aP = pP implies that pf§ = -pg + 2mm and
hence @ is a rational multiple mna/p of m. Let m/p = c/dwithc
and d relatively prime and d > 0. Then a/p and b/p are d-th
rootsof 1 if ¢ 1is evenand d-th rootsof -1 if ¢ is odd. Theroots

k'le(k'l'zj)ei. If k> d,

these roots repeat in blocks of d as j varies from 1 to k. Let

a.k—’]b‘]-1 of fk(x) are now of the form p

k=qd +r with g and r integers and 0 < r < d. Then

i

(15) fk(x) (_.l)cqrpqdr fr([ 1 ]qu/p qd) [Xd_(_l)c(k-l) p(k-l)d] q

Now let j=q'd + r' with q' and r' integersand 0 < r' < d. Itthen
follows from (15) that

k7 _ e. f/,q r
[5) = 0% (@ [5]
where e=q'(d +cr + cqd + ¢ +1) + cqr' and

26=a%[qq' - (@] +d(ar' +q'r - 29't") .
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(Continued from page 260.)

the last digit repeats on a period of 781, the second to last digit has a
period of 3900, and the
Hexanacci Series

1,1,1,1,1,1,6,11, 21, 41, 81, 161, 321, 636, 1261, 2501, 4961, 9841, ..

the last digit as can easily be seen above repeats on a period of 7, the
sequence being:
61111116111111611111161111116...

the secondto lastdigithowever hasthe somewhatlarger period of 7280.

Finally, for sometime, I have wantedto apply these observations
on the periodicity of the last digits to some other Fibonacci problems.
So far, I have only the somewhat lame observation that the Prime-
Fibonacci-Number Density (that is the ratio betweenthe number of Fib-
onacci numbers which are prime below a given number n and that
number n)islessthan pd This observation fol-

4/15 [ dx/Inx .
2

lows from the theorem that if a Fibonacci number is prime, then its
subscript is prime. Thus if all Fibonacci numbers with prime sub-
scripts were prime the density would be Euler's famous expression

X
7(n) = [ dx/lnx
2

However, a good number of Fibonacci Numbers are not prime but do
have prime subscripts, some of these numbers can now be excluded
from the prime-density considerations because every prime greater
than 3 must end ina 1, 3,7, or 9 and can be expressed as 6x+l. Now
consider the sequence of the last digit of the Fibonacci series:

1 2 3 45 6 7 8 91011121314151617 181920
11235831 45 9 4370774175

) st o .
B 5 g

21 22 23 24 25 26 2

ate

28 29 6 37
61?85381909987527965
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1 6 7 30 3 3 6 95 4 9 3 25 72 910

g

(Conl’tinued on page 313.)



