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1. INTRODUCTION 

The frequent occurrence of Fibonacci related numbers in art and nature has 
been of interest to readers of this journal since the very first issue when Basin 
[1] wrote such an article. 

The purpose of this paper is to explain briefly the use of Horadam*s general-
ized Fibonacci recurrence relation [2] 

(1.1) un = pun_l - qun_2 in _> 2) 

in a problem in optics. If we consider the sequence {un} whose elements satisfy 
(1.1) with initial conditions u0 = 1 and u± = 50, thens from Horadam, we have that 

un = Van + W$n 

3 - S0 S. - a 
where V = ~TT » W - a 9 3 - a s 

in which a9 3 are the roots of the characteristic equation 

x2 - px + q - 0. 

2. NONLINEAR RECURRENCE RELATION 

To show the relationship with the optics problems we need some more prelimi-
nary results. 

Put p - B - A9 q = C - AB, and the recurrence relation can be rewritten as 

-2-i- - {B - A)—?- + (C - AB) = 0. 
un-l un-l 

We then add and subtract the term 

t o ge t 
(Z*± + A) 
\ Un ) 

Un + 1 Un U
n + 1 o Un+i o Un 

^Jl±l. + A—IL. + A-Jl£L + Az„ , 4 - ^ t i - - A2- B —-AB + C = 09 

which can be rewritten as 

From this we obtain the non-linear recurrence relation 

(2.1) R R n - Aff - BR . + C = 0, 
v ' n n-l n n-1 7 

in which 

1 
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(2.2) ^ . I k t L + A. 

Thus, 
(2 3) R = U + a)7an + q + &)W$n 

Van .+ A/3̂  
where the term 50 in the definitions of 7 and ftf is given by 

S0 =i?0 - A. 

3. THE OPTICS PROBLEM 

3.1 General Remarks 

In this section, we will show that Eq. (2.1) occurs in the theory of multi-
element optical filters and interferometers. However, before launching into its 
derivation, it is necessary to acquaint the reader with the background to the 
problem. 

Devices such as beam splitters, filters, and interferometers are common tools 
in all forms of experimental optics. In the fields of infrared physics and micro-
wave engineering, the construction of such apparatus relies upon the use of wire 
meshes (or grids) [3]. It is possible to classify these structures into two dis-
tinct classes according to their spectral properties. These are: 

a. inductive grids, made by perforating (in doubly-periodic fashion) a thin 
metal plate with aperatures, and 

b. capacitive grids, the natural complement of inductive grids, which are 
composed of a periodic array of metal inclusions immersed in an insulating 
material. 

The transmittance of inductive structures approaches zero at long wavelengths, 
whereas that of capacitive grids approaches unity at those wavelengths. In the 
far infrared and microwave regions of the electromagnetic spectrum, absorption 
within the metal is negligible and so we need only concern ourselves with the re-
flectance and transmittance of these structures. 

With these prefatory remarks, let us now concern ourselves with the design of 
interferometers and low-frequency pass filters. These consist of a stack of many 
such grids separated from one another by a distance of s. In the case of the in-
terferometer, the stack is composed of purely inductive elements, while the low-
pass filter is composed of a stack of captive structures. 

Each of the grids in the stack acts as a diffraction grating and gives rise to 
an infinite set of diffracted plane waves (orders) excited by the incident plane 
wave field. Interferometers and filters are operated with wavelengths in excess 
of the grid period (d), and so it may be deduced that only the single undispersed 
wave is propagating (i.e., capable of carrying energy away from the grids). All 
of the other orders are said to be evanescent and decay exponentially as they 
propagate away from a grid. Provided that the ratio s/d exceeds 0.5, the evanes-
cent orders provide no significant mechanism for communication between the grids 
[4] and so we need only consider the zeroth (or undispersed) order in our deriva-
tion. 

3.2 Derivation of a Non-Linear Difference Equation 

Let i?0 and T0 be the amplitude reflection and transmission coefficients of the 
zeroth order of one of these grids. Now consider a wave incident upon the (n+1)-
grid structure of Figure 1. Let Rn and Tn be the amplitude reflection and trans-
mission coefficients of this device relative to a phase origin at the center of 
the uppermost grid. We now regard this (n + l)-grid structure as a single grid 
displaced by a distance s from an n-grid structure. By adopting a multiple scat-
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tering approach, we can now trace the path of a wave through this system. This is 
a sophistication of the ray trace mentioned by Huntley [5]. 

- • • • • • OT-
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Fig. 1. Side view of the (n + 1) grid stack with a plane wave 
of wavelength X indicent at an angle of cf>. Rn and Tn 
are reflection and transmission coefficients measured 
relative to a phase origin at 0. 

A wave of amplitude 1 incident upon the top surface is reflected with ampli-
tude i?0 and transmitted with amplitude TQ. The transmitted component then tra-
verses an optical path length of s cos $ (where (j) is the angle of incidence). Thus, 
the wave incident upon the n grid structure has amplitude TQQ where 

and 

p = exp (id) 

o = ~y-s cos q 

for a field of wavelength A. This wave is then transmitted and reflected by the n 
grid structure with the reflected amplitude being given by TQRn_1p. The reflected 
component then propagates toward the top surface9 advancing in phase by 6, where 
it is partially transmitted out into free space with amplitude TQRn_1p2 and par-
tially reflected back into the cavity with amplitude TQRn_1RQp2; we continue this 
process ad infinitum and arrive at the series: 

(3.1) 2xfe *n = R0 +#n-1^02p2E(^n-lP2) 
k = 0 

Since all of the reflection coefficients have magnitude less than unity, we write 

Rn = R0 + 
Rn-iT2y 

1 - V n - l P 
This may be reduced to the simpler form 

(3.2) Rn. 
RQ - i?n_xP g 

1 " W - ! P 2 

where 

with 

E, = exp (i\j)r) 

%- arg.(i?0). 
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This simplification is a consequence of 
a. conservation of energy, 

I 2 U?n + \T = 1 
and 

l o I ' I•"• o I 

b . the phase const ra in t [6, 7] 

a rg(T 0 ) =arg(i?Q) + TT/2 

appropriate to all lossless up-down symmetric structures. 
Equation (3.2) is of the same form as (2.1) with 

A. _J_ B. ii c - ±-

constants which are only dependent upon the geometry and the reflection coeffi-
cient R0, which may be found using a rigorous electromagnetic scattering theory. 
Having derived Rn, the transmittance is then 

I 2 _ i _ | D 12 \T„ = 1 U?„ 

3.3 Interferometers 

The basic component of any interferometer is an inductive element. In Figure 
2 are shown transmission spectra for a typical inductive grid and its associated 
two-grid interferometer. The transmittance of this interferometer is given by 

I2 = 1/[1 + F sin2(X)] 2\ 

where 

and 

4|fl„l: 

X = 6 + *, • 

I 2 ) 2 

Clearly, it can be seen that this is a wavelength selection device with interference 
maxima for normally incident radiation, at 

Kax (£ 
2s 
*P/T0 

a = o, i , 2, . ) . 

Fig. 2. Normal incidence wavelength spectra for a typical inductive grid 
[the curve whose decay is of the approximate form \TQ\2a (d/X) ] 
and its associated two-grid interferometer (the curve exhibiting 
resonant behavior at X = 2s/I). For this structure, s/d =2.0. 
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The resonance width AA is governed by F, the finesse of the instrument, and 
decreases as the transmittance of a single grid decreases. This feature is illus-
trated in Figure 3, where a grid of substantially lower transmittance is used. 
Also shown on Figure 3 are spectra for three-, four-, and five-grid interferome-
ters. For an (n + l)-grid interferometer, the single transmission resonance for 
the two-grid device splits into n peaks, each having a significantly higher reso-
lution factor Q, 

The locations of these peaks are given by the n solutions of the equation 

(3.3) (3 +a). 
This reduces to the simpler and more explicit form, 

(3.4) <S + arg (i? ) = k-n ± — arccos [K - ( i ") COS \n + 1 

where £ = 1, 2, ..., n and k is a nonnegative integer. 

Fig. 3. Normal incidence wavelength spectra for an inductive grid stack 
composed of 2, 3, 4, and 5 elements (indicated by an integer above 
the resonance peaks). The separation of the individual elements 
is s/d =2.0. 

By considerably reducing the long wavelength filtering action of the inductive 
grids that compose the interferometer, we can obtain a broadband-pass filter. The 
spectrum of such a structure is illustrated in Figure 4. 
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Fig. 4. Normal incidence wavelength spectra for 2-, 4-, and 6-grid 
band-pass filters. Here s/d =1.2. 
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3.5 Low Pass Filters 

The aim of such filters is to exclude any high-frequency components from the 
transmission spectrum. To achieve this objective, it is necessary to select a 
capacitive grid as the basic component of the stack. In Figure 5 we present typi-
cal spectra for four multi-element filters. Note that as the number of grids in 
the stack is increased, the cut-off between the transmission and rejection regions 
is sharpened. 
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Fig. 5. Normal incidence frequency spectra of typical low-pass filters 
composed of up to 6 capacitive elements separated by s/d= 1.0. 

4. CONCLUDING REMARKS 

The solution of the nonlinear difference equations relying upon the use of 
Horadamfs generalized Fibonacci recurrence relation discussed here totally circum-
vents the explicit and inelegant treatments of earlier, less general attempts [8], 
It also facilitates the calculation of the positions of the transmission maxima 
[see Eq. (3.3)] for a grid stack containing an arbitrary number of elements. 
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