1982]

Coefficients in the generating difference equations (4.2), as k varies, appear in Table 2 if we alternate + and - signs. Corresponding characteristic polynomials occur in [4] as proper divisors, or as products of proper divisors. Refer to Hancock [1], also.

Further, it might be noted that, if we employ the recurrence relation in (4.1) repeated.y, we may expand U_{nm} binomially as

$$\begin{aligned} U_{nm} &= U_{n-t, m-t} + \binom{2t}{1} U_{n-t, m-t+1} + \binom{2t}{2} U_{n-t, m-t+2} + \cdots \\ &+ \binom{2t}{1} U_{n-t, m+t+1} + U_{n-t, m+t} \quad (1 \le t < n, \ 1 \le t < m). \end{aligned}$$

This is because the original recurrence relation (4.1) for U_{nm} is "binomial" (t = 1), i.e., the coefficients are 1, 2, 1.

Finally, we remark that the row elements in the first column, U_{n1} , given in (4.2), are related to the *Catalan numbers* C_n by

(5.5)
$$U_{n1} = (n+1)C_n$$

ACKNOWLEDGMENT

The authors wish to thank the referee for his comments, which have improved the presentation of this paper.

REFERENCES

- 1. H. Hancock. "Trigonometric Realms of Rationality." Rendiconti del Circolo Matematico di Palermo 49 (1925):263-76.
- 2. V. E. Hoggatt, Jr. & Marjorie Bicknell. "Roots of Fibonacci Polynomials." *The Fibonacci Quarterly* 11, no. 3 (1973):271-74.
- A. F. Horadam, R. P. Loh, & A. G. Shannon. "Divisibility Properties of Some Fibonacci-Type Sequences." Combinatorial Mathematics VI: Proceedings, Armidale, August, 1978. (Lecture Notes in Mathematics, Vol. 748, pp. 55-64.) Berlin: Springer-Verlag, 1979.
- A. F. Horadam & A. G. Shannon. "Irrational Sequence-Generated Factors of Integers." The Fibonacci Quarterly 19, no. 3 (1981):240-50.
- 5. L. G. Wilson. Private correspondence.

ONE-PILE TIME AND SIZE DEPENDENT TAKE-AWAY GAMES

JIM FLANIGAN

University of California at Los Angeles, Los Angeles, CA 90024 (Submitted July 1980)

1. INTRODUCTION

In a one-pile take-away game, two players alternately remove chips from a single pile of chips. Depending on the particular formulation of play, a *constraint function* specifies the number of chips which may be taken from the pile in each position. The game ends when no move is possible. In *normal* (*misère*) play, the player who makes the final move wins (loses). Necessarily, one of the players has a strategy which can force a win.

In this *Quarterly*, Whinihan [7], Schwenk [5], and Epp & Ferguson [2] have analyzed certain one-pile take-away games which can be represented by an ordered

ONE-PILE TIME AND SIZE DEPENDENT TAKE-AWAY GAMES

triple (n, w, f). Here $n \in \mathbb{Z}^+ \cup \{0\}$, $w \in \mathbb{Z}^+$, and $f:\mathbb{Z}^+ \to \mathbb{Z}^+$ is nondecreasing. On the initial move in the game (n, w, f), a player takes from 1 to w chips from a pile of n chips. Subsequently, if a player takes t chips from the pile, then the next player to move may take from 1 to f(t) chips. In [3], the author provides an analysis of a generalization of this formulation of a one-pile take-away game so as to allow for play with two piles of chips.

The purpose of this paper is to present a formulation and an analysis of another type of one-pile take-away game. The formulation in this paper is quite dissimilar to that studied in [2], [5], and [7]. In the present formulation, the constraint function f is a function of two variables. The first variable is equal to one plus the number of moves made since the start of play. Think of this variable as representing *time*. The second variable represents the number of chips in the pile, that is, pile *size*. We shall call this formulation the *one-pile time* and size dependent take-away game. It is nicknamed tastag.

For example, suppose the constraint function is

$$f(t, n) = t + 1 + \left[\frac{n}{2}\right].$$

Here, [x] denotes the largest integer less than or equal to x. At the start of play (time t = 1), suppose that the pile contains 211 chips. The first player to move may take from 1 to 107 chips. Suppose that he takes 51 chips, say, so as to leave 160 chips in the pile. Then his opponent may reply (at time t = 2) by taking from 1 to 83 chips. In Section 4, it will be shown that for play beginning with a pile of 211 chips, the second player to move can force a win. In Section 5, it will be shown that if the first player opens play by taking 51 chips, then the second player possesses fifteen winning replies. To force a win, the second player should take from 43 to 57 chips. If the first player opens by taking 107 chips, say, then the second player has a unique winning reply, namely, to take a single chip.

2. THE RULES OF THE GAME

Let $f: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$. Suppose that the pile contains *n* chips after t - 1 moves have been made, $t \ge 1$. On the *t*th move, the player to move must take from 1 to f(t, n) chips. (t, n, f) will denote the position consisting of a pile of *n* chips after t - 1 moves have been made, with play governed by the constraint function f.

In this paper we restrict ourselves to tastags for which the constraint function f satisfies the following growth condition.

CONDITION 2.1: $\forall t \ge 1, \forall n \ge 1$

$$f(t, n) \leq f(t, n + 1) \leq f(t, n) + 1.$$

Set $\mathfrak{C} = \{f | f: Z^+ \times Z^+ \rightarrow Z^+ \text{ and } f \text{ satisfies Condition 2.1} \}$. Define the normal outcome sets h_+ and p_+ by

 $h_{+} = \{(t, n, f) | t \ge 1, n \ge 0, f \in C \text{ and the first player to} \\ \text{move in } (t, n, f) \text{ can force a win in normal play} \}$

and

$$p_{+} = \{(t, n, f) \mid t \ge 1, n \ge 0, f \in \mathbb{C} \text{ and the second player to} \\ \text{move in } (t, n, f) \text{ can force a win in normal play} \}.$$

We define the misère outcome sets h_{-} and p_{-} just as we define h_{+} and p_{+} , respectively, except that we replace "normal" by "misère" in the definitions.

For $f \in \mathbb{C}$, define $\tilde{f}: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$ by

$$\tilde{f}(t, n) = f(t, n + 1) \quad \forall t \ge 1, \forall n > 1.$$

In a straightforward manner, it can be shown that $\tilde{f} \in \mathfrak{C}$. It is also not difficult to verify the following:

PROPOSITION 2.1: If $t \ge 1$, $n \ge 1$, and $f \in C$, then $(t, n, f) \in h_{-}$ if and only if $(t, n - 1, \tilde{f}) \in h_{+}.$

An immediate consequence of Proposition 2.1 is the following: If we can analyze (t, n, f) for normal play for each $t \ge 1$, $n \ge 0$, and $f \in C$, then we can analyze (t, n, f) for misère play for each $t \ge 1$, $n \ge 0$, and $f \in \mathbf{C}$.

In this paper attention is restricted to normal play. Our aim is the following:

1. Determine the outcome sets h_+ and p_+ .

2. For each $(t, n, f) \in h_{+}$, prescribe a winning move for the player who moves next.

3. THE GAME TABLEAU

For fixed $f \in C$, to analyze all one-pile tastags (t, n, f), $t \ge 1$, $n \ge 0$, we construct a game tableau for f. The game tableau is an infinite array

$$\langle E_{t,r} \rangle_{t,r=1}$$

whose entries belong to the set $Z^+ \cup \{0, \infty\}$. For each $t \ge 1$, let D_t denote the *t*th diagonal of the tableau. That is, $D_t = \langle E_{t+1-r, r} \rangle_{r=1}^t$. For example, in the tableau in Figure 3.1, $D_8 = \langle 2, 3, 5, 0, 0, 0, 0, 0 \rangle$.

In the sequel, the following conventions are adopted:

- 1. $E_{t, -1} = -1, E_{t, 0} = 0 \forall t \ge 1.$ 2. max $Z = \infty$.
- 3. $n + \infty = \infty \forall n \in \mathbb{Z}^+ \cup \{0, \infty\}.$
- 4. The domain of f is extended from $Z^+ \times Z^+$ to $Z^+ \times (Z^+ \cup \{\infty\})$, and

 $f(t, \infty) = \infty \quad \forall t \geq 1.$

Construct the game tableau for f by double induction as follows:

- A. The sole entry of D_1 is $E_{11} = \max\{n \mid f(1, n) \ge n\}$.
- Suppose that the entries for diagonals D_1 , \overline{D}_2 , ..., D_{t-1} have been computed в. for some $t \ge 2$. Then compute the entries of diagonal D_t as follows:
 - 1. $E_{t,1} = \max\{n \mid f(t, n) \ge n\}.$ 2. Suppose the entries $E_{t+1-u, u}$, u = 1, 2, ..., r - 1, have been computed for some r, 2 < r < t.
 - a. If $E_{t-r+2,r-1} = 0$, put $E_{t-r+1,r} = 0$. b. If $E_{t-r+2,r-1} > 0$ and r is even, put

$$E_{t-r+1,r} = \begin{cases} 0, \text{ if } E_{t-r+2,r-1} + 1 \leq E_{t-r+1,u} \text{ for some } u, 1 \leq u \leq r-1. \\ \\ E_{t-r+2,r-1} + 1, \text{ otherwise.} \end{cases}$$

c. If $E_{t-r+2, r-1} > 0$ and r is odd, put

$$E_{t-r+1,r} = \begin{cases} 0, \text{ if } E_{t-r+2,r-1} + \max\{n \ge 1 | f(t-r+1, E_{t-r+2,r-1} + n) \ge n\} \\ \le E_{t-r+1,u} \text{ for some } u, \ 1 \le u \le r-1. \\ E_{t-r+2,r-1} + \max\{n \ge 1 | f(t-r+1, E_{t-r+2,r-1} + n) \ge n\}, \\ \text{otherwise.} \end{cases}$$

Let us illustrate this construction with an example. **EXAMPLE 3.1:** Let $f:\mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$ be defined as follows:

$$f(1, n) = \begin{cases} 3 & \text{for } n \le 20, \\ n - 17 & \text{for } n \ge 21. \end{cases}$$

1982]

ONE-PILE TIME AND SIZE DEPENDENT TAKE-AWAY GAMES

For
$$t = 2$$
 or 3, $f(t, n) = 5 - t + \left[\frac{n}{3}\right] \forall n \ge 1$.
 $\begin{pmatrix} 1 & \text{for } 1 \le n \le 9, \end{cases}$

$$f(4, n) = \begin{cases} -1 & -1 \\ n - 9 \text{ for } n \ge 10. \end{cases} \quad f(5, n) \equiv 4. \quad f(6, n) = 1 + \lfloor \frac{n}{4} \rfloor \quad \forall n \ge 1.$$

For $7 \le t \le 13$, $f(t, n) \equiv 2$. For $t \ge 14$, $f(t, n) = n \forall n \ge 1$. Condition 2.1 is satisfied by f. The complete game tableau for f is given in Figure 3.1.

t r	1	2	3	4	5	6	7	8	9	10	11	12	• • •
1	3	5	0	0	14	0	19	0	00	0	0	0	
2	4	0	0	11	0	16	0	20	0	0	∞	0	
3	3	0	10	0	15	0	19	0	0	∞	0	0	
4	1	5	0	8	0	11	0	0	00	0	0	0	
5	4	0	7	0	10	0	0	14	0	00	0	0	
6	1	3	5	6	9	0	13	0	00	0	0	0	
7	2	3	- 5	6	8	9	11	00	0	-0	0		
8	2	3	5	6	8	9	∞	0	0	0			
9	2	3	5	6	8	00	0	0	0	• • •			
10	2	3	5	6	00	0	0	0					
11	2	3	5	8	0	0	0						
12	2	3	∞	0	0	0							
13	2	co	0	0	0								
14	8	0	0	0									
15	00	0	0										
16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0											
•	с ^н .	•	•										
•	•	•	•										

Fig. 3.1. The game tableau for Example 3.1

For a large class of constraint functions in C, the corresponding game tableaux have no zero entries. For any such game tableau, the entries of each row (column) form a strictly increasing (nondecreasing) sequence of positive integers. The tastags generated by such constraint functions will be called *escalation tastags*. Set

 $\mathcal{E} = \{ f \in \mathbb{C} \mid \text{the game tableau of } f \text{ has no zero entries} \}.$

EXAMPLE 3.2: Consider the constraint function $f(t) = t + 1 + \lfloor n/2 \rfloor$ mentioned in Section 1. For $t \ge 1$ and $r \ge 1$, it can be shown that

$$E_{t,r} = \begin{cases} [2(r+t) - 3]2^{(r+1)/2} - 2(t-2) & \text{if } r \text{ is odd,} \\ \\ [2(r+t) - 3]2^{r/2} - 2t + 3 & \text{if } r \text{ is even.} \end{cases}$$

 $f \in \mathcal{E}$. A portion of the tableau of f is shown in Figure 3.2.

EXAMPLE 3.3: On page 124 of [6], Silverman introduces a game called *Triskideka*philia Escalation. It was the challenge of this game for an arbitrary pile size $n \ge 0$ that motivated the present study of one-pile tastags. This game is equivalent to the one-pile tastag (1, n, f), where f(t, n) = t + 1. $f \in \mathcal{E}$. For $t \ge 1$ and $r \ge 1$, it can be shown that

54

[Feb.

$$E_{t,r} = \begin{cases} \left(\frac{r+1}{2}\right)^2 + (t+1)\left(\frac{r+1}{2}\right) - 1 & \text{if } r \text{ is odd,} \\ \\ \left(\frac{r}{2}\right)^2 + (t+2)\left(\frac{r}{2}\right) & \text{if } r \text{ is even} \end{cases}$$

A portion of the game tableau of f is shown in Figure 3.3.

t r	1	2	3	4	5	6	7	8
1	4	7	22	29	74	89	210	241
2	6	9	28	35	88	103	240	271
3	8	11	34	41	102	117	270	301
4	10	13	40	47	116	131	300	331
5	12	15	46	53	130	145	330	361
6	14	17	52	59	144	159	360	391
7	16	19	58	65	158	173	390	421
8	18	21	64	71	172	187	420	451

Fig. 3.2. A portion of the game tableau for Examle 3.2

t r	1	2	3	4	5	6	7	8	9	10
1	2	4	7	10	14	18	23	28	34	40
2	3	5	9	12	17	21	27	32	39	45
3	4	6	11	14	20	24	31	36	44	50
4	5	7	13	16	23	27	35	40	49	55
5	6	8	15	18	26	30	39	44	54	60
6	7	9	17	20	29	33	43	48	59	65
7	8	10	19	22	32	36	47	52	64	70
8	9	11	21	24	35	39	51	56	69	75
9	10	12	23	26	38	42	55	60	74	80
10	11	13	25	28	41	45	59	64	79	85

Fig. 3.3 A portion of the game tableau for Example 3.3

4. DETERMINING THE NORMAL OUTCOME SETS

From the game tableau of f, $f \in C$, the following theorem reveals the outcome set to which any tastag (t, n, f) belongs.

THEOREM 4.1: If $t \ge 1$, $n \ge 1$, and $f \in \mathfrak{C}$, then $(t, n, f) \in h_+$ if and only if $\min\{r \mid E_{t,r} \ge n\}$ is odd.

As an illustration, return to Example 3.1. Is (1, 22, f) a first-player win? Here $\min\{r | E_{1,r} \ge 22\} = 9,$

which is odd. Thus, the first player to move in (1, 22, f) can force a win. How about the position (5, 11, f)? Here

$$\min\{r | E_{5,r} \ge 11\} = 8,$$

which is even. Thus, the second player to move in (5, 11, f) can force a win.

As a final example, return to the tastag (1, 211, f) mentioned in Section 1: $f(t, n) = t + 1 + \lfloor n/2 \rfloor$. A portion of the game tableau for f is shown in Figure 3.2. We observe that min $\{r | E_{1,r} \ge 211\} = 8$, which is even. As asserted in Section 1, (1, 211, f) is a second-player win.

1982]

In the author's doctoral dissertation [4], it is shown that if $f \in C$, then $\min\{r | E_{1,r} \ge n\}$ is, in fact, the normal *remoteness* number of (t, n, f). Moveover, if $f \in \mathcal{E}$, then min $\{r | E_{1,r} \ge n\}$ is also the normal suspense number of (t, n, f).*

5. AN OPTIMAL STRATEGY

The proof of Theorem 4.1 will be *constructive*. Suppose that $(t, n, f) \in h_+$. Set $\beta(t, n, f) = \min\{r | E_{t,r} \ge n\}$. We prescribe the following winning move:

1. Take $n - E_{t+1, \beta(t, n, f)-1}$ chips if $n > E_{t+1, \beta(t, n, f)-1}$. 2. Take a single chip if $n \le E_{t+1, \beta(t, n, f)-1}$.

As an illustration, return again to Example 3.1.

First consider the position (3, 19, f). $\beta(3, 19, f) = 7$, so (3, 19, f) ϵh_+ . $19 > 11 = E_{4,6}$. The player whose turn it is to move should take 19 - 11 = 8 chips. Since f(3, 19) = 8, seven other moves are also possible. Observe that each of the seven other moves is "bad," since $\beta(4, 19 - u, f) = 9 \forall u, 1 \le u \le 7$. Next consider the position (4, 13, f). $\beta(4, 13, f) = 9$, so (4, 13, f) εh_+ .

 $13 \le 14 = E_{5,8}$. The first player to move can make a winning move by taking a single chip. f(4, 13) = 4. Note that taking 2 chips is also a winning move. However, taking either 3 or 4 chips is a losing move.

Let u denote the move in which u chips are taken from the pile. The set of winning moves from the position (t, n, f) is

 $\{u \mid 1 \leq u \leq f(t, n) \land n, \text{ and } (t + 1, n - u, f) \in p_+\}$

= $\{u \mid 1 \le u \le f(t, n) \land n, \text{ and } \beta(t+1, n-u, f) \text{ is even}\}.$

When this set is nonempty, Condition 2.1 and a short argument assures us that it is a set of consecutive integers.

Return to the tastag discussed in Section 1. From Figure 3.2 we observe that $\beta(2, 160, f) = 7, so (2, 160, f) \in h_+$. The set of winning moves from (2, 160, f) is

 $\{u \mid 1 \leq u \leq 83, \text{ and } \beta(3, 160 - u, f) = 6\} = \{43, 44, \ldots, 57\}.$

Next note that $\beta(2, 104, f) = 7$. The set of winning moves from (2, 104, f) is

 $\{u \mid 1 \leq u \leq 55, \text{ and } \beta(3, 104 - u, f) = 6\} = \{1\}.$

6. THE PROOF OF THEOREM 4.1

Our proof of Theorem 4.1 takes the usual approach. Pick any $f \in \mathfrak{C}$. To show that a set A satisfies

 $A = \{(t, n, f) | t \ge 1, n \ge 0\} \cap h_{+},$

it suffices to show each of the following:

a. No terminal position is in A.

ь. For each position in A, there exists a move to a position not in A.

For each position not in A, every move results in a position in A. c.

Before proving Theorem 4.1, we introduce some notation and prove two lemmas. For each $t \ge 1$, $n \ge 0$, define

 $\alpha(t, n, f) = \max[\{0\} \cup \{r \mid 0 < E_{t,r} < n\}],$ $\beta(t, n, f) = \min\{r | E_{t,r} \ge n\}, \text{ and } \gamma(t, n, f) = \max\{0\} \cup \{r | r \text{ is even, } E_{t+1,r} > 0, r < \beta(t, n, t)\}\}.$

*Chapter 14 of [1] is a good reference for the reader who is not familiar with the concepts of remoteness and suspense numbers.

Since $f(t, n) \ge 1 \forall t \ge 1$, $\forall n \ge 1$, it can be shown that $\beta(t, n, f) < \infty$ [in fact, $\beta(t, n, f) \le n$] $\forall t \ge 1$, $\forall n \ge 0$. Define the set of "followers" of position (t, n, f) to be

 $F(t, n, f) = \{(t + 1, n - u, f) | 1 \le u \le f(t, n) \land n\}.$

For each $l \geq 0$, define the set

 $A_{\ell} = \{(t, n, f) \mid t \ge 1, n \ge 0, \beta(t, n, f) \text{ is odd}\}.$

Theorem 4.1 asserts that

$$\{(t, n, f) | t \ge 1, n \ge 0\} \cap h_{+} = \bigcup_{r=0}^{\infty} A_{2r+1}.$$

Demanding that f satisfies Condition 2.1 forces the game tableau of f to possess two nice properties. Lemma 6.1 reveals the two properties.

LEMMA 6.1: Suppose $f \in C$, $t \geq 1$, and $r \geq 0$.

a. If $0 < E_{t, 2r+1} < n$, then $n - f(t, n) > E_{t+1, 2r}$.

b. If $0 < n \le E_{t, 2r+1}$, then $n - f(t, n) \le E_{t+1, 2r}$.

PROOF: a. By the manner in which the tableau is constructed,

 $E_{t, 2r+1} > 0 \Rightarrow E_{t, 2r+1} = E_{t+1, 2r} + \delta,$

where $\delta = \max\{n' | f(t, E_{t+1, 2r} + n') \ge n'\}$. Observe that

(1) $f(t, E_{t+1, 2r} + \delta + 1) < \delta + 1.$

Since $n > E_{t, 2r+1}$, we have $n - E_{t+1, 2r} - \delta - 1 \ge 0$. Thus,

(2)
$$f(t, n) = f[t, (E_{t+1, 2r} + \delta + 1) + (n - E_{t+1, 2r} - \delta - 1)]$$

$$\leq f(t, E_{t+1, 2r} + \delta + 1) + (n - E_{t+1, 2r} - \delta - 1)$$

by Condition 2.1. (1) and (2) yield

$$f(t, n) < (\delta + 1) + (n - E_{t+1, 2r} - \delta - 1) = n - E_{t+1, 2r}$$

Thus, $n - f(t, n) > E_{t+1, 2r}$.

b. Since $E_t, 2r+1 > 0$, we have $E_t, 2r+1 = E_{t+1}, 2r + \delta$, where δ is as in the proof of part (a) of the Lemma. If $n-1 \leq E_{t+1}, 2r$, then the assertion in part (b) of the Lemma is trivial. So suppose $n > E_{t+1}, 2r + 1$. Then $1 < n - E_{t+1}, 2r \leq \delta$, and so

$$f(t, n) = f[t, E_{t+1, 2r} + (n - E_{t+1, 2r})] \ge n - E_{t+1, 2r}$$
. Q.E.D

The second lemma we shall need is the following.

LEMMA 6.2: Suppose $f \in \mathbb{C}$, $t \ge 1$, $r \ge 1$, and $E_{t,u} < \infty$ for each $u, 1 \le u \le 2r$. If $E_{t+1, 2r} > 0$, then $E_{t, 2r+1} > 0$.

PROOF: Suppose $E_{t,u} < \infty$ for each $u, 1 \le u \le 2r$, and suppose $E_{t+1,2r} > 0$. Then $E_{t,2r+1} = 0$ if and only if

 $\exists u, 1 \leq u \leq 2r, \quad \ni E_{t,u} \geq E_{t+1,2r} + \delta,$

where $\delta = \max\{n \mid f(t, E_{t+1, 2r} + n) \ge n\}$. Assume that there exists such an integer u. We consider two cases.

Case 1. u is even. Here $\exists r', 1 \leq r' \leq r, \quad \exists u = 2r'$. Since

$$E_{t+1, 2r} > 0, E_{t+1, 2r'-1} < E_{t+1, 2r}$$

Thus

 $E_{t+1,\ 2r} \ + \ \delta \ \ge \ E_{t+1,\ 2r} \ + \ 1 \ > \ E_{t+1,\ 2r'-1} \ + \ 1 \ = \ E_{t,\ 2r'} \ = \ E_{t,\ u} \,,$ a contradiction.

Case 2. *u* is odd. Here $\exists r', 0 \leq r' \leq r, \exists u = 2r' + 1$. Let $\delta' = \max\{n | f(t, E_{t+1}, 2r' + n) \geq n\},\$

so $E_{t, 2r'+1} = E_{t+1, 2r'} + \delta'$. Then

 $f[t, E_{t+1, 2r} + (E_{t, 2r'+1} - E_{t+1, 2r} + 1)]$

= $f[t, E_{t+1, 2r} + (E_{t+1, 2r'} + \delta' - E_{t+1, 2r} + 1)]$

= $f(t, E_{t+1, 2r'} + \delta' + 1) \ge f(t, E_{t+1, 2r'} + \delta')$ by Condition 2.1

 $\geq \delta'$ by the definition of δ'

 $= E_{t, 2r'+1} - E_{t+1, 2r'} \text{ since } E_{t, 2r'+1} = E_{t+1, 2r'} + \delta'$

 $\geq E_{t, 2r'+1} - E_{t+1, 2r} + 1 \text{ since } E_{t+1, 2r} > 0 \Rightarrow E_{t+1, 2r} > E_{t+1, 2r'}.$

Thus, $\delta \ge E_{t, 2r'+1} - E_{t+1, 2r} + 1$. Consequently,

 $E_{t+1, 2r} + \delta \ge E_{t+1, 2r} + (E_{t, 2r'+1} - E_{t+1, 2r} + 1) > E_{t, 2r'+1} = E_{t, u},$ a contradiction.

In both Case 1 and Case 2, a contradiction has been observed. Thus, it must be that $E_{t, 2r+1} > 0$. Q.E.D.

PROOF OF THEOREM 4.1: Consider the set

$$A = \bigcup_{r=0}^{\infty} A_{2r+1}.$$

To prove Theorem 4.1, it suffices to establish statements (a), (b), and (c) in the first paragraph of this section. Figure 6.1 is intended as a guide.

 $\ldots E_{t, \gamma+1} \ldots E_{t, \alpha} \ldots E_{t, \beta} \ldots$ $\ldots E_{t+1, \gamma} \ldots E_{t+1, \alpha-1} \ldots E_{t+1, \beta-1} \ldots$

Fig. 6.1. A portion of the game tableau for f

a. The set of terminal positions is $\{(t, 0, f) | t > 1\}$.

 $\beta(t, 0, f) = 0 \forall t \ge 1$, since $E_{t, 0} = 0 \forall t \ge 1$.

Thus, {terminal positions} $\cap A = \emptyset$. Statement (a) holds.

b. Suppose $(t, n, f) \in A$. Then $\beta(t, n, f)$ is odd. Let $\alpha = \alpha(t, n, f)$ and $\beta = \beta(t, n, f)$. There are two cases to consider.

Case b.1. $n > E_{t+1, \beta-1}$. Since $0 < n \le E_{t,\beta}$, part (b) of Lemma 6.1 indicates that $n - f(t, n) \le E_{t+1, \beta-1}$. Thus, in position (t, n, f), a player may <u>take</u>

 $n - E_{t+1, \beta-1}$

chips to leave the position $(t + 1, E_{t+1, \beta-1}, f)$. $\beta(t + 1, E_{t+1, \beta-1}, f) = \beta - 1$ is even, so

$$(t + 1, E_{t+1, \beta-1}, f) \notin A.$$

Case b.2. $n \leq E_{t+1, \beta-1}$. Taking a single chip leaves the position

$$(t + 1, n - 1, f).$$

Let $\beta' = \beta(t+1, n-1, f)$. Since $E_{t+1, \beta-1} > n-1$, we have $\beta' \leq \beta - 1$, and so $\beta' + 1 \leq \beta$.

FIBONACCI-CAYLEY NUMBERS

1982]

Assume that $(t + 1, n - 1, f) \in A$. Then β' is odd. Set $\widetilde{E}_{t, \beta'+1} = E_{t+1, \beta'} + 1$. Since $E_{t+1,\beta'} \ge n - 1$, we have (3) $\tilde{E}_{t,\beta'+1} \geq n.$

Consequently, (4)

 $\widetilde{E}_{t,\beta'+1} > E_{t,\alpha}$. By the maximality of α , the minimality of β , and (4), we conclude that $E_{t,\beta'+1} > 0$ (and, of course, $E_{t,\beta'+1} = \tilde{E}_{t,\beta'+1}$). But $\beta'+1$ is even, β is odd, and $\beta'+1 \leq \beta$. Hence, we also have $\beta' + 1 < \beta$. $\beta' + 1 < \beta$ and (3) contradict the minimality of β . We conclude that $(t + 1, n - 1, f) \notin A$.

We have shown that, in both Case b.1 and Case b.2, statement (b) holds.

c. Suppose $(t, n, f) \notin A$. If n = 0, statement (c) is vacuous. So assume n > 0. Observe that β is even and that $\beta > 0$. Let $\gamma = \gamma(t, n, f)$. If $\gamma = 0$, then $E_{t,\gamma+1} > 0$. If $\gamma > 0$, then γ even and $E_{t+1,\gamma} > 0$ imply that $E_{t,\gamma+1} > 0$ by Lemma 6.2. Thus, in either case, $E_{t,\gamma+1} > 0$. So $\gamma + 1 \leq \alpha$ by the maximality of α , the minimality of β , and the fact that $\alpha + 1 < \beta$.

Now $0 < E_{t, \gamma+1} \leq E_{t, \alpha} < n$ and γ even imply that

(5)
$$n - f(t, n) > E_{t+1}$$

by (a) of Lemma 6.1. Since $n \leq E_{t+6} = E_{t+1,6-1} + 1$, $n-1 \leq E_{t+1,6-1}$. Combine this with (5) to get

$$E_{t+1,\gamma} < n - u \leq E_{t+1,\beta-1} \quad \forall u \ni 1 \leq u \leq f(t, n).$$

Thus, $\beta(t + 1, n - u, f)$ is odd $\forall u \neq 1 \leq u \leq f(t, n)$. We have shown that

$$F(t, n, f) \subseteq A$$
,

which verifies statement (c). Q.E.D.

REFERENCES

- 1. J. H. Conway. On Numbers and Games. London: Academic Press, 1976.
- 2. R. J. Epp & T. S. Ferguson. "A Note on Take-Away Games." The Fibonacci Quarterly 18. no. 4 (1980):300-304.
- 3. J. A. Flanigan. "Generalized Two-Pile Fibonacci Nim." The Fibonacci Quarterly 16, no. 5 (1978):459-69.
- 4. J. A. Flanigan. "An Analysis of Some Take-Away and Loopy Partizan Graph Games." Ph.D. Dissertation, U.C.L.A., 1979.
- 5. A. J. Schwenk. "Take-Away Games." The Fibonacci Quarterly 8, no. 3 (1970): 225-34.
- D. L. Silverman. Your Move. New York: McGraw-Hill, 1971.
 M. J. Whinihan. "Fibonacci Nim." The Fibonacci Quarterly 1, no. 4 (1963):9-13.

FIBONACCI-CAYLEY NUMBERS

P. V. SATYANARAYANA MURTHY S.K.B.R. College, Amalapuram-533 201, India

(Submitted August 1980)

Horadam [2] defined and studied in detail the generalized Fibonacci sequence defined by