Coefficients in the generating difference equations (4.2), as k varies, appear in Table 2 if we alternate + and - signs. Corresponding characteristic polynomials occur in [4] as proper divisors, or as products of proper divisors. Refer to Hancock [1], also.

Further, it might be noted that, if we employ the recurrence relation in (4.1) repeated.y, we may expand $U_{n m}$ binomially as

$$
\begin{aligned}
U_{n m}=U_{n-t, m-t} & +\binom{2 t}{1} U_{n-t, m-t+1}+\binom{2 t}{2} U_{n-t, m-t+2}+\cdots \\
& +\binom{2 t}{1} U_{n-t, m+t+1}+U_{n-t, m+t} \quad(1 \leq t<n, 1 \leq t<m)
\end{aligned}
$$

This is because the original recurrence relation (4.1) for $U_{n m}$ is "binomial" ($t=$ 1), i.e., the coefficients are $1,2,1$.

Finally, we remark that the row elements in the first column, $U_{n 1}$, given in (4.2), are related to the Catalan numbers C_{n} by

$$
\begin{equation*}
U_{n 1}=(n+1) C_{n} . \tag{5.5}
\end{equation*}
$$

ACKNOWLEDGMENT

The authors wish to thank the referee for his comments, which have improved the presentation of this paper.

REFERENCES

1. H. Hancock. "Trigonometric Realms of Rationality." Rendiconti del Circolo Matematico di PaZermo 49 (1925):263-76.
2. V. E. Hoggatt, Jr. \& Marjorie Bicknell. "Roots of Fibonacci Polynomials." The Fibonacci Quarterly 11, no. 3 (1973):271-74.
3. A. F. Horadam, R. P. Loh, \& A. G. Shannon. "Divisibility Properties of Some Fibonacci-Type Sequences." Combinatorial Mathematics VI: Proceedings, Armidale, August, 1978. (Lecture Notes in Mathematics, Vol. 748, pp. 55-64.) Berlin: Springer-Verlag, 1979.
4. A. F. Horadam \& A. G. Shannon. "Irrational Sequence-Generated Factors of Integers." The Fibonacci Quarterly 19, no. 3 (1981):240-50.
5. L. G. Wilson. Private correspondence.

ONE-PILE TIME AND SIZE DEPENDENT TAKE-AWAY GAMES

JIM FLANIGAN
University of California at Los Angeles, Los Angeles, CA 90024
(Submitted July 1980)

1. INTRODUCTION

In a one-pile take-away game, two players alternately remove chips from a single pile of chips. Depending on the particular formulation of play, a constraint function specifies the number of chips which may be taken from the pile in each position. The game ends when no move is possible. In normal (misère) play, the player who makes the final move wins (loses). Necessarily, one of the players has a strategy which can force a win.

In this Quarterly, Whinihan [7], Schwenk [5], and Epp \& Ferguson [2] have analyzed certain one-pile take-away games which can be represented by an ordered
triple (n, w, f). Here $n \varepsilon Z^{+} \cup\{0\}, w \in Z^{+}$, and $f: Z^{+} \rightarrow Z^{+}$is nondecreasing. On the initial move in the game (n, w, f), a player takes from 1 to w chips from a pile of n chips. Subsequently, if a player takes t chips from the pile, then the next player to move may take from 1 to $f(t)$ chips. In [3], the author provides an analysis of a generalization of this formulation of a one-pile take-away game so as to allow for play with two piles of chips.

The purpose of this paper is to present a formulation and an analysis of another type of one-pile take-away game. The formulation in this paper is quite dissimilar to that studied in [2], [5], and [7]. In the present formulation, the constraint function f is a function of two variables. The first variable is equal to one plus the number of moves made since the start of play. Think of this variable as representing time. The second variable represents the number of chips in the pile, that is, pile size. We shall call this formulation the one-pile time and size dependent take-away game. It is nicknamed tastag.

For example, suppose the constraint function is

$$
f(t, n)=t+1+\left[\frac{n}{2}\right]
$$

Here, $[x]$ denotes the largest integer less than or equal to x. At the start of play (time $t=1$), suppose that the pile contains 211 chips. The first player to move may take from 1 to 107 chips. Suppose that he takes 51 chips, say, so as to leave 160 chips in the pile. Then his opponent may reply (at time $t=2$) by taking from 1 to 83 chips. In Section 4 , it will be shown that for play beginning with a pile of 211 chips, the second player to move can force a win. In Section 5, it will be shown that if the first player opens play by taking 51 chips, then the second player possesses fifteen winning replies. To force a win, the second player should take from 43 to 57 chips. If the first player opens by taking 107 chips, say, then the second player has a unique winning reply, namely, to take a single chip.

2. THE RULES OF THE GAME

Let $f: Z^{+} \times Z^{+} \rightarrow Z^{+}$. Suppose that the pile contains n chips after $t-1$ moves have been made, $t \geq 1$. On the t th move, the player to move must take from 1 to $f(t, n)$ chips. (t, n, f) will denote the position consisting of a pile of n chips after $t-1$ moves have been made, with play governed by the constraint function f.

In this paper we restrict ourselves to tastags for which the constraint function f satisfies the following growth condition.
CONDITION 2.1: $\quad \forall t \geq .1, \forall n \geq 1$

$$
f(t, n) \leq f(t, n+1) \leq f(t, n)+1
$$

Set $\mathbb{C}=\left\{f \mid f: Z^{+} \times Z^{+} \rightarrow Z^{+}\right.$and f satisfies Condition 2.1$\}$. Define the normal outcome sets h_{+}and p_{+}by

$$
h_{+}=\{(t, n, f) \mid t \geq 1, n \geq 0, f \in \mathbb{C} \text { and the first player to }
$$ move in (t, n, f) can force a win in normal play\}

and

$$
\begin{array}{r}
p_{+}=\{(t, n, f) \mid t \geq 1, n \geq 0, f \in \mathfrak{e} \text { and the second player to } \\
\\
\text { move in }(t, n, f) \text { can force a win in normal play } .
\end{array}
$$

We define the misere outcome sets h_{-}and p_{-}just as we define h_{+}and p_{+}, respectively, except that we replace "normal" by "misère" in the definitions. For $f \in \mathbb{C}$, define $\tilde{f}: Z^{+} \times Z^{+} \rightarrow Z^{+}$by

$$
\tilde{f}(t, n)=f(t, n+1) \quad \forall t \geq 1, \forall n \geq 1
$$

In a straightforward manner, it can be shown that $\tilde{f} \varepsilon \mathbb{C}$. It is also not difficult to verify the following:

PROPOSITION 2.1: If $t \geq 1, n \geq 1$, and $f \varepsilon \mathbb{C}$, then (t, n, f) $\varepsilon h_{\text {_ }}$ if and only if $(t, n-1, \tilde{f}) \varepsilon h_{+}$

An immediate consequence of Proposition 2.1 is the following: If we can analyze (t, n, f) for normal play for each $t \geq 1, n \geq 0$, and $f \varepsilon \mathbb{C}$, then we can analyze (t, n, f) for misère play for each $t \geq 1, n \geq 0$, and $f \in \mathbb{C}$.

In this paper attention is restricted to normal play. Our aim is the following:

1. Determine the outcome sets h_{+}and p_{+}.
2. For each (t, n, f) εh_{+}, prescribe a winning move for the player who moves next.

3. THE GAME TABLEAU

For fixed $f \in \mathbb{C}$, to analyze all one-pile tastags $(t, n, f), t \geq 1, n \geq 0$, we construct a gome tableau for f. The game tableau is an infinite array

$$
\left\langle E_{t, r}\right\rangle_{t, r=1}^{\infty}
$$

whose entries belong to the set $Z^{+} \cup\{0, \infty\}$. For each $t \geq 1$, let D_{t} denote the t th diagonal of the tableau. That is, $D_{t}=\left\langle E_{t+1-r}, r\right\rangle_{r=1}^{t}$. For example, in the tableau in Figure $3.1, D_{8}=\langle 2,3,5,0,0,0,0,0\rangle$.

In the sequel, the following conventions are adopted:

1. $E_{t,-1}=-1, E_{t, 0}=0 \forall t \geq 1$.
2. $\max Z=\infty$.
3. $n+\infty=\infty \forall n \varepsilon Z^{+} \cup\{0, \infty\}$.
4. The domain of f is extended from $Z^{+} \times Z^{+}$to $Z^{+} \times\left(Z^{+} \cup\{\infty\}\right)$, and

$$
f(t, \infty)=\infty \quad \forall t \geq 1 .
$$

Construct the game tableau for f by double induction as follows:
A. The sole entry of D_{1} is $E_{11}=\max \{n \mid f(1, n) \geq n\}$.
B. Suppose that the entries for diagonals $D_{1}, \bar{D}_{2}, \ldots, D_{t-1}$ have been computed for some $t \geq 2$. Then compute the entries of diagonal D_{t} as follows:

1. $E_{t, 1}^{7}=\max \{n \mid f(t, n) \geq n\}$.
2. Suppose the entries $E_{t+1-u}, u, u=1,2, \ldots, r-1$, have been computed for some $r, 2 \leq r \leq t$.
a. If $E_{t-r+2, r-1}=0$, put $E_{t-r+1, r}=0$.
b. If $E_{t-r+2, r-1}>0$ and r is even, put

$$
E_{t-r+1, r}=\left\{\begin{array}{l}
0, \text { if } E_{t-r+2, r-1}+1 \leq E_{t-r+1, u} \text { for some } u, 1 \leq u \leq r-1 \\
E_{t-r+2, r-1}+1, \text { otherwise } .
\end{array}\right.
$$

c. If $E_{t-r+2, r-1}>0$ and r is odd, put

$$
E_{t-r+1, r}=\left\{\begin{array}{r}
0, \text { if } E_{t-r+2, r-1}+\max \left\{n \geq 1 \mid f\left(t-r+1, E_{t-r+2, r-1}+n\right) \geq n\right\} \\
\leq E_{t-r+1, u} \text { for some } u, 1 \leq u \leq r-1 \\
E_{t-r+2, r-1}+\max \left\{n \geq 1 \mid f\left(t-r+1, E_{t-r+2, r-1}+n\right) \geq n\right\}
\end{array}\right.
$$

Let us illustrate this construction with an example.
EXAMPLE 3.1: Let $f: Z^{+} \times Z^{+} \rightarrow Z^{+}$be defined as follows:

$$
f(1, n)=\left\{\begin{array}{cl}
3 & \text { for } n \leq 20 \\
n-17 & \text { for } n \geq 21
\end{array}\right.
$$

For $t=2$ or $3, f(t, n)=5-t+\left[\frac{n}{3}\right] \forall n \geq 1$.

$$
f(4, n)=\left\{\begin{array}{c}
1 \quad \text { for } 1 \leq n \leq 9, \\
n-9 \text { for } n \geq 10 .
\end{array} \quad f(5, n) \equiv 4 . \quad f(6, n)=1+\left[\frac{n}{4}\right] \forall n \geq 1 .\right.
$$

For $7 \leq t \leq 13, f(t, n) \equiv 2$. For $t \geq 14, f(t, n)=n \forall n \geq 1$. Condition 2.1 is satisfied by f. The complete game tableau for f is given in Figure 3.1.

${ }_{t}+$	1	2	3	4	5	6	7	8	9	10	11	12	. .
1	3	5	0	0	14	0	19	0	∞	0	0	0	...
2	4	0	0	11	0	16	0	20	0	0	∞	0	...
3	3	0	10	0	15	0	19	0	0	∞	0	0	...
4	1	5	0	8	0	11	0	0	∞	0	0	0	-
5	4	0	7	0	10	0	0	14	0	∞	0	0	...
6	1	3	5	6	9	0	13	0	∞	0	0	0	\cdots
7	2	3	5	6	8	9	11	∞	0	0	0	...	
8	2	3	5	6	8	9	∞	0	0	0	. . .		
9	2	3	5	6	8	∞	0	0	0	...			
10	2	3	5	6	∞	0	0	0	. .				
11	2	3	5	∞	0	0	0	...					
12	2	3	∞	0	0	0	...						
13	2	∞	0	0	0	...							
14	∞	0	0	0	...								
15	∞	0	0	...									
16	∞	0		. .									
:	:	:	:										

Fig. 3.1. The game tableau for Example 3.1
For a large class of constraint functions in \mathfrak{C}, the corresponding game tableaux have no zero entries. For any such game tableau, the entries of each row (column) form a strictly increasing (nondecreasing) sequence of positive integers. The tastags generated by such constraint functions will be called escalation tastags. Set

$$
\mathcal{E}=\{f \varepsilon \mathbb{C} \mid \text { the game tableau of } f \text { has no zero entries }\} .
$$

EXAMPLE 3.2: Consider the constraint function $f(t)=t+1+[n / 2]$ mentioned in Section 1. For $t \geq 1$ and $r \geq 1$, it can be shown that

$$
E_{t, r}= \begin{cases}{[2(r+t)-3] 2^{(r+1) / 2}-2(t-2)} & \text { if } r \text { is odd } \\ {[2(r+t)-3] 2^{r / 2}-2 t+3} & \text { if } r \text { is even }\end{cases}
$$

$f \varepsilon \varepsilon$. A portion of the tableau of f is shown in Figure 3.2.
EXAMPLE 3.3: On page 124 of [6], Silverman introduces a game called Triskidekaphilia Escalation. It was the challenge of this game for an arbitrary pile size $n \geq 0$ that motivated the present study of one-pile tastags. This game is equivalent to the one-pile tastag ($1, n, f$), where $f(t, n)=t+1 . f \varepsilon \mathcal{E}$. For $t \geq 1$ and $r \geq 1$, it can be shown that

$$
E_{t, r}= \begin{cases}\left(\frac{r+1}{2}\right)^{2}+(t+1)\left(\frac{r+1}{2}\right)-1 & \text { if } r \text { is odd } \\ \left(\frac{r}{2}\right)^{2}+(t+2)\left(\frac{r}{2}\right) & \text { if } r \text { is even }\end{cases}
$$

A portion of the game tableau of f is shown in Figure 3.3.

t	1	2	3	4	5	6	7	8
1	4	7	22	29	74	89	210	241
2	6	9	28	35	88	103	240	271
3	8	11	34	41	102	117	270	301
4	10	13	40	47	116	131	300	331
5	12	15	46	53	130	145	330	361
6	14	17	52	59	144	159	360	391
7	16	19	58	65	158	173	390	421
8	18	21	64	71	172	187	420	451

Fig. 3.2. A portion of the game tableau for Examle 3.2

$t r$	1	2	3	4	5	6	7	8	9	10
1	2	4	7	10	14	18	23	28	34	40
2	3	5	9	12	17	21	27	32	39	45
3	4	6	11	14	20	24	31	36	44	50
4	5	7	13	16	23	27	35	40	49	55
5	6	8	15	18	26	30	39	44	54	60
6	7	9	17	20	29	33	43	48	59	65
7	8	10	19	22	32	36	47	52	64	70
8	9	11	21	24	35	39	51	56	69	75
9	10	12	23	26	38	42	55	60	74	80
10	11	13	25	28	41	45	59	64	79	85

Fig. 3.3 A portion of the game tableau for Example 3.3

4. DETERMINING THE NORMAL OUTCOME SETS

From the game tableau of $f, f \varepsilon \mathbb{C}$, the following theorem reveals the outcome set to which any tastag (t, n, f) belongs.
THEOREM 4.1: If $t \geq 1, n \geq 1$, and $f \varepsilon \mathbb{e}$, then (t, n, f) εh_{+}if and only if $\min \left\{r \mid E_{t, r} \geq n\right\}$ is odd.

As an illustration, return to Example 3.1. Is (1, 22, f) a first-player win? Here

$$
\min \left\{r \mid E_{1, r} \geq 22\right\}=9
$$

which is odd. Thus, the first player to move in (1, 22, f) can force a win.
How about the position (5, 11, f)? Here

$$
\min \left\{r \mid E_{5, r} \geq 11\right\}=8
$$

which is even. Thus, the second player to move in (5, 11, f) can force a win.
As a final example, return to the tastag (1, 211, f) mentioned in Section 1: $f(t, n)=t+1+[n / 2]$. A portion of the game tableau for f is shown in Figure 3.2. We observe that $\min \left\{r \mid E_{1, r} \geq 211\right\}=8$, which is even. As asserted in Section $1,(1,211, f)$ is a second-player win.

In the author's doctoral dissertation [4], it is shown that if $f \varepsilon \mathbb{C}$, then $\min \left\{r \mid E_{1, r} \geq n\right\}$ is, in fact, the normal remoteness number of (t, n, f). Moveover, if $f \varepsilon \varepsilon$, then $\min \left\{r \mid E_{1, r} \geq n\right\}$ is also the normal suspense number of $(t, n, f) . *$

5. AN OPTIMAL STRATEGY

The proof of Theorem 4.1 will be constructive. Suppose that (t, n, f) εh_{+} Set $\beta(t, n, f)=\min \left\{r \mid E_{t, r} \geq n\right\}$. We prescribe the following winning move:

1. Take $n-E_{t+1}, \beta(t, n, f)-1$ chips if $n>E_{t+1, \beta(t, n, f)-1}$.
2. Take a single chip if $n \leq E_{t+1, \beta(t, n, f)-1}$.

As an illustration, return again to Example 3.1.
First consider the position (3, 19, f). $\beta(3,19, f)=7$, so (3, 19, f) εh_{+}. $19>11=E_{4,6}$. The player whose turn it is to move should take $19-11=8$ chips. Since $f(3,19)=8$, seven other moves are also possible. Observe that each of the seven other moves is "bad," since $\beta(4,19-u, f)=9 \forall u, 1 \leq u \leq 7$.

Next consider the position ($4,13, f$). $\beta(4,13, f)=9$, so $(4,13, f) \varepsilon h_{+}$. $13 \leq 14=E_{5,8}$. The first player to move can make a winning move by taking a single chip. $f(4,13)=4$. Note that taking 2 chips is also a winning move. However, taking either 3 or 4 chips is a losing move.

Let u denote the move in which u chips are taken from the pile. The set of winning moves from the position (t, n, f) is

$$
\begin{gathered}
\left\{u \mid 1 \leq u \leq f(t, n) \wedge n, \text { and }(t+1, n-u, f) \varepsilon p_{+}\right\} \\
=\{u \mid 1 \leq u \leq f(t, n) \wedge n, \text { and } \beta(t+1, n-u, f) \text { is even }\} .
\end{gathered}
$$

When this set is nonempty, Condition 2.1 and a short argument assures us that it is a set of consecutive integers.

Return to the tastag discussed in Section 1. From Figure 3.2 we observe that $\beta(2,160, f)=7$, so $(2,160, f) \varepsilon h_{+}$. The set of winning moves from ($2,160, f$) is

$$
\{u \mid 1 \leq u \leq 83, \text { and } \beta(3,160-u, f)=6\}=\{43,44, \ldots, 57\}
$$

Next note that $\beta(2,104, f)=7$. The set of winning moves from $(2,104, f)$ is

$$
\{u \mid 1 \leq u \leq 55, \text { and } \beta(3,104-u, f)=6\}=\{1\}
$$

6. THE PROOF OF THEOREM 4.1

Our proof of Theorem 4.1 takes the usual approach. Pick any $f \in \mathbb{C}$. To show that a set A satisfies

$$
A=\{(t, n, f) \mid t \geq 1, n \geq 0\} \cap h_{+},
$$

it suffices to show each of the following:
a. No terminal position is in A.
b. For each position in A, there exists a move to a position not in A.
c. For each position not in A, every move results in a position in A.

Before proving Theorem 4.1, we introduce some notation and prove two lemmas.
For each $t \geq 1, n \geq 0$, define
$\alpha(t, n, f)=\max \left[\{0\} \cup\left\{r \mid 0<E_{t, r}<n\right\}\right]$,
$\beta(t, n, f)=\min \left\{r \mid E_{t, r} \geq n\right\}$, and
$\gamma\left(t, n, f^{\prime}\right)=\max \left[\{0\} \cup \cup\left(r \mid r\right.\right.$ is even, $\left.\left.E_{t+1, r}>0, r<\beta(t, n, t)\right\}\right]$.

[^0]Since $f(t, n) \geq 1 \forall t \geq 1, \forall n \geq 1$, it can be shown that $\beta(t, n, f)<\infty$ [in fact, $\beta(t, n, f) \leq n] \forall t \geq 1, \forall n \geq 0$. Define the set of "followers" of position (t, n, f) to be

$$
F(t, n, f)=\{(t+1, n-u, f) \mid 1 \leq u \leq f(t, n) \wedge n\}
$$

For each $l \geq 0$, define the set

$$
A_{\ell}=\{(t, n, f) \mid t \geq 1, n \geq 0, \beta(t, n, f) \text { is odd }\} .
$$

Theorem 4.1 asserts that

$$
\{(t, n, f) \mid t \geq 1, n \geq 0\} \cap h_{+}=\bigcup_{r=0}^{\infty} A_{2 r+1}
$$

Demanding that f satisfies Condition 2.1 forces the game tableau of f to possess two nice properties. Lemma 6.1 reveals the two properties.
LEMMA 6.1: Suppose $f \in \mathfrak{C}, t \geq 1$, and $r \geq 0$.
a. If $0<E_{t, 2 r+1}<n$, then $n-f(t, n)>E_{t+1,2 r}$.
b. If $0<n \leq E_{t, 2 r+1}$, then $n-f(t, n) \leq E_{t+1,2 r}$.

PROOF: a. By the manner in which the tableau is constructed,

$$
E_{t, 2 r+1}>0 \Rightarrow E_{t, 2 r+1}=E_{t+1,2 r}+\delta,
$$

where $\delta=\max \left\{n^{\prime} \mid f\left(t, E_{t+1,2 r}+n^{\prime}\right) \geq n^{\prime}\right\}$. Observe that

$$
\begin{equation*}
f\left(t, E_{t+1,2 n}+\delta+1\right)<\delta+1 \tag{1}
\end{equation*}
$$

Since $n>E_{t, 2 r+1}$, we have $n-E_{t+1,2 r}-\delta-1 \geq 0$. Thus,

$$
\begin{align*}
f(t, n) & =f\left[t,\left(E_{t+1,2 r}+\delta+1\right)+\left(n-E_{t+1,2 r}-\delta-1\right)\right] \tag{2}\\
& \leq f\left(t, E_{t+1,2 r}+\delta+1\right)+\left(n-E_{t+1,2 r}-\delta-1\right)
\end{align*}
$$

by Condition 2.1. (1) and (2) yield

$$
f(t, n)<(\delta+1)+\left(n-E_{t+1,2 r}-\delta-1\right)=n-E_{t+1,2 n}
$$

Thus, $n-f(t, n)>E_{t+1}, 2 r$.
b. Since $E_{t, 2 r+1}>0$, we have $E_{t, 2 r+1}=E_{t+1,2 r}+\delta$, where δ is as in the proof of part (a) of the Lemma. If $n-1 \leq E_{t+1,2 n}$, then the assertion in part (b) of the Lemma is trivial. So suppose $n>E_{t+1,2 n}+1$. Then $1<n-E_{t+1,2 r} \leq$ δ, and so

$$
f(t, n)=f\left[t, E_{t+1,2 r}+\left(n-E_{t+1,2 r}\right)\right] \geq n-E_{t+1,2 r} . \quad \text { Q.E.D. }
$$

The second lemma we shall need is the following.
LEMMA 6.2: Suppose $f \in \mathfrak{C}, t \geq 1, r \geq 1$, and $E_{t, u}<\infty$ for each $u, 1 \leq u \leq 2 r$. If $E_{t+1,2 r}>0$, then $E_{t, 2 r+1}>0$ 。

PROOF: Suppose $E_{t, u}<\infty$ for each $u, 1 \leq u \leq 2 r$, and suppose $E_{t+1,2 r}>0$. Then $E_{t, 2 r+1}=0$ if and only if

$$
\exists u, 1 \leq u \leq 2 r, \quad \ni E_{t, u} \geq E_{t+1,2 r}+\delta,
$$

where $\delta=\max \left\{n \mid f\left(t, E_{t+1,2 n}+n\right) \geq n\right\}$. Assume that there exists such an integer u. We consider two cases.

Case 1. u is even. Here $\exists r^{\prime}, 1 \leq r^{\prime} \leq r, \ni u=2 r^{\prime}$. Since

$$
E_{t+1,2 r}>0, E_{t+1,2 r},-1<E_{t+1,2 r}
$$

Thus

$$
E_{t+1,2 r}+\delta \geq E_{t+1,2 r}+1>E_{t+1,2 r^{\prime}-1}+1=E_{t, 2 r},=E_{t, u}
$$

a contradiction.

Case 2. u is odd. Here $\exists r^{\prime}, 0 \leq r^{\prime}<r$, э $u=2 r^{\prime}+1$. Let

$$
\delta^{\prime}=\max \left\{n \mid f\left(t, E_{t+1,2 r},+n\right) \geq n\right\}
$$

so $E_{t, 2 r^{\prime}+1}=E_{t+1,2 r^{\prime}}+\delta^{\prime}$. Then

$$
\begin{aligned}
f[t & \left., E_{t+1,2 r}+\left(E_{t, 2 r^{\prime}+1}-E_{t+1,2 r}+1\right)\right] \\
& =f\left[t, E_{t+1,2 r}+\left(E_{t+1,2 r^{\prime}}+\delta^{\prime}-E_{t+1,2 r}+1\right)\right] \\
& =f\left(t, E_{t+1,2 r^{\prime}}+\delta^{\prime}+1\right) \geq f\left(t, E_{t+1,2 r^{\prime}}+\delta^{\prime}\right) \quad \text { by Condition } 2.1 \\
& \geq \delta^{\prime} \text { by the definition of } \delta^{\prime} \\
& =E_{t, 2 r^{\prime}+1}-E_{t+1,2 r^{\prime}}, \text { since } E_{t, 2 r^{\prime}+1}=E_{t+1,2 r^{\prime}}+\delta^{\prime} \\
& \geq E_{t, 2 r^{\prime}+1}-E_{t+1,2 r}+1 \text { since } E_{t+1,2 r}>0 \Rightarrow E_{t+1,2 r}>E_{t+1,2 r^{\prime}} .
\end{aligned}
$$

Thus, $\delta \geq E_{t, 2 r \prime+1}-E_{t+1,2 r}+1$. Consequently,

$$
E_{t+1,2 r}+\delta \geq E_{t+1,2 r}+\left(E_{t, 2 r^{\prime}+1}-E_{t+1,2 r}+1\right)>E_{t, 2 r^{\prime}+1}=E_{t, u},
$$

a contradiction.
In both Case 1 and Case 2, a contradiction has been observed. Thus, it must be that $E_{t, 2 r+1}>0$. Q.E.D.
proof of theorem 4.1: Consider the set

$$
A=\bigcup_{r=0}^{\infty} A_{2 r+1}
$$

To prove Theorem 4.1, it suffices to establish statements (a), (b), and (c) in the first paragraph of this section. Figure 6.1 is intended as a guide.

$$
\begin{aligned}
& \text { •• } E_{t, \gamma+1} \text {. . } E_{t, \alpha} \text {. . } E_{t, \beta} \text {. . } \\
& \text { •• } E_{t+1, \gamma} \text {. . } E_{t+1, \alpha-1} \text {.. } E_{t+1, \beta-1} \text {.. }
\end{aligned}
$$

Fig. 6.1. A portion of the game tableau for f
a. The set of terminal positions is $\{(t, 0, f) \mid t \geq 1\}$.

$$
\beta(t, 0, f)=0 \forall t \geq 1, \text { since } E_{t, 0}=0 \forall t \geq 1
$$

Thus, \{terminal positions\} $\cap A=\emptyset$. Statement (a) holds.
b. Suppose $(t, n, f) \varepsilon A$. Then $\beta(t, n, f)$ is odd. Let $\alpha=\alpha(t, n, f)$ and $\beta=\beta(t, n, f)$. There are two cases to consider.

Case b.1. $n>E_{t+1, \beta-1}$. Since $0<n \leq E_{t, \beta}$, part (b) of Lemma 6.1 indicates that $n-f(t, n) \leq E_{t+1, \beta-1}$. Thus, in position (t, n, f), a player may take

$$
n-E_{t+1, B-1}
$$

chips to leave the position $\left(t+1, E_{t+1, \beta-1}, f\right) . \quad \beta\left(t+1, E_{t+1, \beta-1}, f\right)=\beta-1$ is even, so

$$
\left(t+1, E_{t+1, \beta-1}, f\right) \notin A .
$$

Case b.2. $n \leq E_{t+1, \beta-1}$. Taking a single chip leaves the position

$$
(t+1, n-1, f)
$$

Let $\beta^{\prime}=\beta(t+1, n-1, f)$. Since $E_{t+1, \beta-1}>n-1$, we have $\beta^{\prime} \leq \beta-1$, and so $\beta^{\prime}+1 \leq \beta$.

Assume that $(t+1, n-1, f) \varepsilon A$. Then β^{\prime} is odd. Set $\tilde{E}_{t, \beta^{\prime}+1}=E_{t+1, \beta^{\prime}}+1$. Since $E_{t+1, \beta^{\prime}} \geq n-1$, we have

Consequently,

$$
\begin{gather*}
\tilde{E}_{t, B^{\prime}+1} \geq n \tag{3}\\
\tilde{E}_{t, B^{\prime}+1}>E_{t, \alpha} \tag{4}
\end{gather*}
$$

By the maximality of α, the minimality of β, and (4), we conclude that $E_{t, \beta^{\prime}+1}>0$ (and, of course, $E_{t, \beta^{\prime}+1}=\tilde{E}_{t, \beta^{\prime}+1}$). But $\beta^{\prime}+1$ is even, β is odd, and $\beta^{\prime}+1 \leq \beta$. Hence, we also have $\beta^{\prime}+1<\beta$. $\beta^{\prime}+1<\beta$ and (3) contradict the minimality of β. We conclude that $(t+1, n-1, f) \notin A$.

We have shown that, in both Case b.l and Case b.2, statement (b) holds.
c. Suppose $(t, n, f) \notin A$. If $n=0$, statement (c) is vacuous. So assume $n>0$. Observe that β is even and that $\beta>0$. Let $\gamma=\gamma(t, n, f)$. If $\gamma=0$, then $E_{t, \gamma+1}>0$. If $\gamma>0$, then γ even and $E_{t+1, \gamma}>0$ imply that $E_{t, \gamma+1}>0$ by Lemma 6.2. Thus, in either case, $E_{t, \gamma+1}>0$. So $\gamma+1 \leq \alpha$ by the maximality of α, the minimality of β, and the fact that $\alpha+1<\beta$.

Now $0<E_{t, \gamma+1} \leq E_{t, \alpha}<n$ and γ even imply that

$$
\begin{equation*}
n-f(t, n)>E_{t+1, \gamma} \tag{5}
\end{equation*}
$$

by (a) of Lemma 6.1. Since $n \leq E_{t, \beta}=E_{t+1, \beta-1}+1$, $n-1 \leq E_{t+1, \beta-1}$. Combine this with (5) to get

$$
E_{t+1, \gamma}<n-u \leq E_{t+1, \beta-1} \forall u \neq 1 \leq u \leq f(t, n)
$$

Thus, $\beta(t+1, n-u, f)$ is odd $\forall u \ni 1 \leq u \leq f(t, n)$. We have shown that

$$
F(t, n, f) \subseteq A
$$

which verifies statement (c). Q.E.D.

REFERENCES

1. J. H. Conway. On Numbers and Games. London: Academic Press, 1976.
2. R. J. Epp \& T. S. Ferguson. "A Note on Take-Away Games." The Fibonacci Quarterly 18. no. 4 (1980):300-304.
3. J.A. Flanigan. "Generalized Two-Pile Fibonacci Nim." The Fibonacci Quarterly 16, no. 5 (1978):459-69.
4. J. A. Flanigan. "An Analysis of Some Take-Away and Loopy Partizan Graph Games." Ph.D. Dissertation, U.C.L.A., 1979.
5. A. J. Schwenk. "Take-Away Games." The Fibonacci Quarterly 8, no. 3 (1970): 225-34.
6. D. L. Silverman. Your Move. New York: McGraw-Hill, 1971.
7. M. J. Whinihan. "Fibonacci Nim." The Fibonacci Quarterly 1, no. 4 (1963):913.

FIBONACCI-CAYLEY NUMBERS
P. V. SATYANARAYANA MURTHY
S.K.B.R. College, Amalapuram-533 201, India
(Submitted August 1980)
Horadam [2] defined and studied in detail the generalized Fibonacci sequence defined by

[^0]: *Chapter 14 of [1] is a good reference for the reader who is not familiar with the concepts of remoteness and suspense numbers.

