COMBINATORIAL ASPECTS OF AN INFINITE PATTERN OF INTEGERS

average of an arithmetical function f is to express f as a Dirichlet product of functions g and h. Therefore, it is natural to investigate the possibility of expressing a function f as a product of two functions under our new convolution, and whenever such a representation exists, to use it to obtain asymptotic results for f. This would allow us to investigate certain functions which do not arise naturally as a Dirichlet product. Some results have been obtained by this method but more refinements are required.

REFERENCES

- Eckford Cohen. "An Elementary Method in the Asymptotic Theory of Numbers." Duke Math. J. 28 (1961):183-92.
- 2. Eckford Cohen. "The Number of Unitary Divisors of an Integer." Amer. Math. Monthly 67 (1960).
- 3. Eckford Cohen. "Unitary Products of Arithmetical Functions." ACTA Arith. 7 (1961).
- 4. Eckford Cohen. "Some Sets of Integers Related to the *k*-Free Integers." ACTA Scient. Math. (Nov. 1961).
- 5. Eckford Cohen & K. Joseph Davis. "Elementary Estimates for Certain Types of Integers." ACTA Scient. Math. 31 (1970).
- 6. H. Davenport. "On the Distribution of Quadratic Residues (Mod p)." J. London Math. Soc. 6 (1931):49-54.
- 7. L. E. Dickson. *History of the Theory of Numbers*. 3 vols. Washington: Carnegie Institution of Washington, 1919-1023; New York: Chelsea, 1952.
- 8. M. Freedman. "Arithmetical Convolution Products and Generalizations." Duke Math. J. 37 (1970):231-41.
- 9. M. D. Gessley. "A Generalized Arithmetic Composition." Amer. Math. Monthly 74 (1967):1216-17.
- 10. D. L. Goldsmith. "A Generalized Convolution for Arithmetic Functions." Duke Math. J. 38 (1971):279-83.
- 11. W. Narkiewicz. "On a Class of Arithmetical Convolutions." Colloquium Mathematicum 10 (1963):81-94.

COMBINATORIAL ASPECTS OF AN INFINITE PATTERN OF INTEGERS

A. F. HORADAM

University of New England, Armidale, N.S.W. 2351, Australia

A. G. SHANNON

New South Wales Institute of Technology, Broadway, N.S.W. 2007, Australia (Submitted June 1980)

1. INTRODUCTION

In two previous papers, [3] and [4], certain basic properties of the sequence $\{A_n(x)\}$ defined by

$$A_{0}(x) = 0, A_{1}(x) = 1, A_{2}(x) = 1, A_{3}(x) = x + 1,$$
 and

(1.1)

$$A_n(x) = x A_{n-2}(x) - A_{n-4}(x)$$

were obtained by the authors.

Here, we wish to investigate further properties of this sequence using as our guide some of the numerical information given by L. G. Wilson [5]. Terminology and notation of [3] and [4] will be assumed to be available to the reader. In particular, let

(1.2) then (1.3) $\beta_i = 4 \cos^2 \frac{i\pi}{2n},$ $\beta_{n+i} = \beta_{n-i},$ (1.4) $\beta_i - 2 = 2 \cos \frac{i\pi}{n},$ (1.5) $(\beta_i - 2)^2 = \beta_{2i}.$

The main result in this paper is Theorem 6. Besides the proof given, another proof is available.

2. PROPERTIES OF
$$A_{\nu}(\beta_{i} - 2)$$

The following theorems generalize computational details in [5]. In Theorems 1 and 2, we use results in [3] and [4] with the Chebyshev polynomial of the second kind, $U_n(x)$.

 $\begin{array}{ll} \text{THEOREM 1:} & A_{2n-1}(\beta_i - 2) = \begin{cases} \pm 1 & (i \text{ odd}) \\ -1 & (i \text{ even}) \end{cases} & (i = 1, 2, 3, \ldots, n-1). \\ \text{PROOF:} & A_{2n-1}(\beta_i - 2) = A_{2n}(\beta_i - 2) \pm A_{2n-2}(\beta_i - 2) \\ & = U_{n-1}\left(\cos\frac{i\pi}{n}\right) \pm U_{n-2}\left(\cos\frac{i\pi}{n}\right) \text{ by (1.4) and [4]} \\ & = \frac{\sin\left(n \cdot \frac{i\pi}{n}\right) \pm \sin\left(n - 1\right)\frac{i\pi}{n}}{\sin\frac{i\pi}{n}} \\ & = \pm 1 \quad \text{according as } i \text{ is } \begin{cases} \text{odd} \\ \text{even} \end{cases}. \\ \text{E.g.,} & A_9 \ 2 \ \cos\frac{\pi}{5} = 1. \end{cases}$

THEOREM 2: $A_r(\beta_i - 2) = \pm A_{2n-r}(\beta_i - 2)$ according as *i* is $\begin{cases} \text{odd} \\ \text{even} \end{cases}$ (*r* odd; *i* = 1, 2, 3, ..., *n* - 1).

$$PROOF: A_{r}(\beta_{i} - 2) = A_{r+1}(\beta_{i} - 2) + A_{r-1}(\beta_{i} - 2)$$

$$= \frac{U_{r-1}}{2} \left(\cos \frac{i\pi}{n} \right) + \frac{U_{r-3}}{2} \left(\cos \frac{i\pi}{n} \right) \text{ by (1.4) and [4]}$$

$$= \frac{\sin\left(\frac{r+1}{2}\right)\frac{i\pi}{n} + \sin\left(\frac{r-1}{2}\right)\frac{i\pi}{n}}{\sin \frac{i\pi}{n}} = \frac{\sin \frac{ri\pi}{2n}}{\sin \frac{i\pi}{2n}}$$

$$= \pm \frac{\sin\left(n - \frac{r}{2}\right)\frac{i\pi}{n}}{\sin \frac{i\pi}{2n}} \text{ according as } i \text{ is } \left\{ \substack{\text{odd} \\ \text{even}} \right\}$$

$$= \pm \left[U_{n-\frac{r+1}{2}}\left(\cos \frac{i\pi}{n}\right) + U_{n-\frac{r+3}{2}}\left(\cos \frac{i\pi}{n}\right) \right]$$

$$= \pm [A_{2n-r+1}(\beta_{i} - 2) + A_{2n-r-1}(\beta_{i} - 2)] \text{ by (1.4) and [4]}$$

$$= \pm A_{2n-r}(\beta_{i} - 2) \text{ according as } i \text{ is } \left\{ \substack{\text{odd} \\ \text{even}} \right\}$$

COMBINATORIAL ASPECTS OF AN INFINITE PATTERN OF INTEGERS

COROLLARY 1: When
$$i = 1$$
, $A_r 2\left(\cos\frac{\pi}{n}\right) = A_{2n-r}\left(2\cos\frac{\pi}{n}\right)$.
E.g., $A_3\left(2\cos\frac{\pi}{5}\right) = A_7\left(2\cos\frac{\pi}{5}\right) = \frac{\sin\frac{3\pi}{10}}{\sin\frac{\pi}{10}} = 2\cos\frac{\pi}{5} + 1 = \frac{3+\sqrt{5}}{2} = \left(\frac{1+\sqrt{5}}{2}\right)^2$.

COROLLARY 2: $A_1(\beta_i - 2), A_3(\beta_i - 2), \dots, A_{2n-1}(\beta_i - 2)$ for a cycle of period n. E.g., for $n = 6, i = 1, A_1 = A_{11} = 1, A_3 = A_9 = 1 + \sqrt{3}, A_5 = A_7 = 2 + \sqrt{3}.$

Our next theorem involves $\phi(n)$, Euler's ϕ -function.

THEOREM 3: Let *n* be odd and $m = \frac{1}{2}\phi(n)$, then $\beta_{2^m} - 2 = -(\beta_1 - 2)$.

PROOF: By the Fermat-Euler Theorem, since (2, n) = 1, it follows that $2^m \equiv \pm 1 \pmod{n}$.

Hence, there exists an odd integer t such that $2^m = nt \pm 1$. Therefore,

$$\beta_{2^{m}} - 2 = 2 \cos 2^{m} \left(\frac{\pi}{n}\right) = 2 \cos(nt \pm 1)\frac{\pi}{n}$$
$$= 2 \cos \pi t \cos\left(\pm \frac{\pi}{n}\right)$$
$$= -(\beta_{1} - 2).$$

COROLLARY 3: When n is even, just one operator ("square and subtract 2") produces the β_1 - 2 for n/2.

This is obvious, because $(\beta_1 - 2)^2 - 2 = 2 \cos \frac{2\pi}{n} = 2 \cos \frac{\pi}{n/2}$.

3. SEMI-INFINITE NUMBER PATTERNS

Consider the pattern of numbers and their mode of generation given in Table 1 for a fixed number k = 5 of columns (Wilson [5]).

Table 1. Pattern of Integers for k = 5

Designate the row number by n and the column number by m (n = 0, 1, 2, ...;m = 1, 2, ..., k). The element in row n and column m is denoted by U_{nm} . From Table 1, the following information may be gleaned:

(3.1)
$$\begin{bmatrix} U_{n1} \\ U_{n2} \\ U_{n3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} U_{n-1, 1} \\ U_{n-1, 2} \\ U_{n-1, 3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{bmatrix}^n \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$(3.2) U_{nm} = 5(U_{n-1,m} - U_{n-2,m}), n > 2 \text{ and}$$

(3.3)
$$\begin{cases} U_{n1} = U_{n5} = \frac{2}{\sqrt{5}} (\alpha a^{n-1} - \beta b^{n-1}) \\ U_{n2} = U_{n4} = \frac{2}{\sqrt{5}} (A a^{n-1} - B b^{n-1}), \quad n \ge 1, \\ U_{n3} = \frac{2}{\sqrt{5}} (C a^{n-1} - D b^{n-1}) \end{cases}$$

where

(3.4)
$$\begin{cases} a = \frac{1}{2}(5 + \sqrt{5}), \ b = \frac{1}{2}(5 - \sqrt{5}) \\ \alpha = \frac{1}{2}(1 + \sqrt{5}), \ \beta = \frac{1}{2}(1 - \sqrt{5}) \\ A = 2 + \sqrt{5}, \ B = 2 - \sqrt{5} \\ C = 3 + \sqrt{5}, \ D = 3 - \sqrt{5} \end{cases}$$

so that $A = 2\alpha + 1$, $B = 2\beta + 1$, $C = 2(\alpha + 1) = A + 1$, $D = 2(\beta + 1) = B + 1$. It follows from (3.3) and (3.4) that

(3.5)
$$\lim_{n \to \infty} \left(\frac{U_{n2}}{U_{n1}} \right) = \frac{A}{\alpha} = \alpha + 1 = A_3 \left(2 \cos \frac{\pi}{5} \right),$$
and

(3.6)
$$\lim_{n \to \infty} \left(\frac{U_{n3}}{U_{n1}} \right) = \frac{C}{\alpha} = 2\alpha = A_5 \left(2 \cos \frac{\pi}{5} \right)$$

Extending Table 1 to the case k = 6, so that now, for example, $U_{51} = 252$ and $U_{43} = 236$, we eventually derive $U_{nm} = 6U_{n-1,m} - 9U_{n-2,m} + 2U_{n-3,m}$; thus

(3.9)
$$\lim_{n \to \infty} \left(\frac{U_{n3}}{U_{n1}} \right) = 2 + \sqrt{3} = A_5 \left(2 \cos \frac{\pi}{6} \right).$$

Results (3.5), (3.6), (3.8), and (3.9) suggest a connection between various limits of ratios (as $n \to \infty$) and corresponding $A_r\left(2 \cos \frac{\pi}{k}\right)$. This link is developed

1982]

in the next section. [In passing, we remark that for k = 9, n = 13, we calculate to two decimal places that

$$\frac{U_{13,2}}{U_{13,1}} = 2.85, A_3\left(2 \cos \frac{\pi}{9}\right) = 2.88,$$

the common value to which they aspire as $n \to \infty$, $k \to \infty$ being 3 (cf. Theorem 6).]

4. AN INFINITE NUMBER PATTERN

For $1 \leq m \leq k$, we find [cf. (3.1)]

(4.1)
$$\begin{cases} U_{nm} = U_{n-1, m-1} + 2U_{n-1, m} + U_{n-1, m+1} & 1 < m < k \\ U_{n1} = U_{n-1, 1} + U_{n-1, 2} & m = 1 \\ U_{nk} = U_{n-1, k} + U_{n-1, k-1} & m = k \end{cases}$$

with $U_n = U_{n, k+1-m}$. Also

(4.2)
$$\begin{cases} U_{nm} = \sum_{r=1}^{\lfloor k/2 \rfloor} (-1)^{r-1} v_{kr} U_{n-r,m} & n > \lfloor k/2 \rfloor \\ U_{n1} = \binom{2n}{n} & n \le k-1 \end{cases}$$

in which v_{nm} is an element of an array in row n and column m defined by

(4.3)
$$v_{nm} = v_{n-1, m} + v_{n-2, m-1} \qquad n \ge 2m$$
$$v_{nm} = 0 \qquad n < 2m$$
$$v_{n1} = n, v_{n0} = 1, v_{0m} = 0, v_{2n, 2n-1} = 2$$

For example, if

$$k = 6, U_{nm} = 6U_{n-1,m} - 9U_{n-2,m} + 2U_{n-3,m},$$

and if

$$k = 9, U_{nm} = 9U_{n-1,m} - 27U_{n-2,m} + 30U_{n-3,m} - 9U_{n-4,m}$$

We look briefly at the $\{v_{nk}\}$ in Section 5.

Notice in (4.2) that for $n \to \infty$, i.e., $k \to \infty$, U_{n1} are the central binomial coefficients.

Now let $n \to \infty$ and $k \to \infty$. We wish to obtain the limit of $U_{nm}/U_{nm'}$. But first, by easy calculation using (4.1) we derive

(4.4)
$$\lim_{n \to \infty} \left(\frac{U_{n-1, 1}}{U_{n1}} \right) = \frac{1}{4}.$$

THEOREM 4: $\lim_{n \to \infty} \left(\frac{U_{nm}}{U_{n1}} \right) = 2m - 1.$

PROOF: The result is trivially true for m = 1. Assume the theorem is true for m = p. That is, assume

$$\lim_{n\to\infty}\left(\frac{U_{np}}{U_{n1}}\right)=2p-1.$$

We test this hypothesis for m = p + 1, using (4.1) several times. Now

$$\begin{split} R &= \lim_{n \to \infty} \left(\frac{U_{n, p+1}}{U_{n1}} \right) \\ &= \lim_{n \to \infty} \left\{ \frac{U_{n-1, p} + 2U_{n-1, p+1} + (U_{n, p+1} - U_{n-1, p} - 2U_{n-1, p+1})}{U_{n1}} \right\} \\ &= \lim_{n \to \infty} \left\{ \frac{2(U_{np} - U_{n-1, p-1} - 2U_{n-1, p}) + (U_{n, p+1} - 2U_{n-1, p+1})}{U_{n1}} \right\} \\ &= \lim_{n \to \infty} \left\{ 2 \left(\frac{U_{np}}{U_{n1}} - \frac{U_{n-1, p-1}}{U_{n-1, 1}} \cdot \frac{U_{n-1, 1}}{U_{n1}} - 2 \frac{U_{n-1, p}}{U_{n-1, 1}} \cdot \frac{U_{n-1, 1}}{U_{n1}} \right) \right. \\ &+ \left(\frac{U_{n, p+1}}{U_{n1}} - 2 \frac{U_{n-1, p+1}}{U_{n-1, 1}} \cdot \frac{U_{n-1, 1}}{U_{n1}} \right) \right\} \\ &= 2 \left(2p - 1 - \left(\frac{2p - 3}{4} \right) - 2 \left(\frac{2p - 1}{4} \right) \right) + \left(R - 2 \frac{R}{4} \right) \end{split}$$
 by (4.4) and the inductive hypothesis,

theorem.

whence
$$R = 2p + 1$$
, which establishes the
COROLLARY 4: $\lim_{n \to \infty} \left(\frac{U_{nm}}{U_{nm'}} \right) = \frac{2m - 1}{2m' - 1}$

1

THEOREM 5:
$$A_{2m-1}(\beta_1 - 2) = 2m - 1 = A_{2k-(2m-1)}(\beta_1 - 2), \ 1 \le m \le k, \ k \ne \infty.$$

PROOF: $A_{2m-1}(\beta_1 - 2) = \frac{\sin(2m - 1)\frac{i\pi}{2k}}{\sin\frac{i\pi}{2k}} = A_{2k-(2m-1)}(\beta_1 - 2)$ by Theorem 2
 $= 2m - 1$

on using a trigonometrical expansion for the numerator, simplifying, and then letting $k \to \infty$.

Clearly there is a connection between Theorems 4 and 5. We therefore assert:

THEOREM 6:
$$\lim_{n \to \infty} \left(\frac{U_{nm}}{U_{n1}} \right) = A_{2m-1}(\beta_1 - 2) = 2m - 1 \quad (k \to \infty).$$

Observe that, with the aid of (4.1) and the manipulative technique of Theorem 4, we may deduce

(4.5)
$$\lim_{n \to \infty} \left(\frac{U_{n-1, 2}}{U_{n1}} \right) = \frac{3}{4}, \quad \lim_{n \to \infty} \left(\frac{U_{n-1, 3}}{U_{n1}} \right) = \frac{5}{4}, \quad \lim_{n \to \infty} \left(\frac{U_{n-1, 4}}{U_{n1}} \right) = \frac{7}{4}, \quad \dots,$$

and
(4.6)
$$\lim_{n \to \infty} \left(\frac{U_{n-2,2}}{U_{n1}} \right) = \frac{3}{16}, \quad \lim_{n \to \infty} \left(\frac{U_{n-2,3}}{U_{n1}} \right) = \frac{5}{16}, \quad \lim_{n \to \infty} \left(\frac{U_{n-2,4}}{U_{n1}} \right) = \frac{7}{16}, \quad \dots$$

Ultimately,

(4.7)
$$\lim_{n \to \infty} \left(\frac{U_{n-r, m}}{U_{n1}} \right) = \frac{2m-1}{4^r},$$

from which Theorem 4 follows if we put r = 0.

This concludes the theoretical basis, with extensions, for the detailed numerical information given by Wilson [5].

1982]

Define

$$(5.1) \qquad \Delta v_{kr} = v_{kr} - v_{k-1, r}$$

THEOREM 7: $\triangle^r v_{kr} = 1$.

PROOF: Use induction. When r = 1,

$$\Delta v_{k1} = k - (k - 1) = 1$$
 by (5.1) and (4.3).

Assume the result is true for $r = 2, 3, \ldots, s - 1$. Then

$$\Delta^{s} v_{ks} = \Delta^{s-1} (\Delta v_{ks})$$

= $\Delta^{s-1} \cdot (v_{k-1,s} + v_{k-2,s-1} - v_{k-1,s})$ by (5.1)
= $\Delta^{s-1} v_{k-2,s-1}$ and (4.3)

= 1 from the inductive hypothesis.

Hence, the theorem is proved.

It can also be shown that

(5.2)	v_{nm}	=	\overline{n}	n -	$\frac{1}{m}$	- m	^m)	= ("	- m	<i>m</i>)	+	$\binom{n}{n}$	- m	т -	- 1	1)	,
whence								[n/2]									
(5.3)						L'n	. =	$\sum_{m=0}^{\infty}$	υ	n m >							

in which L is the *n*th Lucas number defined by the recurrence relation

 $L_n = L_{n-1} + L_{n-2}$ (n > 2)with initial conditions $L_1 = 1$, $L_2 = 3$. Another property is n

(5

5.4)
$$\sum_{m=0} v_{n+m,m} = 3 \cdot 2^{n-1}.$$

Table 2 shows the first few values of v_{kr} (see Hoggatt & Bicknell [2], where the \boldsymbol{v}_{kr} occur as coefficients in a list of Lucas polynomials).

	k^{r}	0	1	2	3	4	5
-	1	1					
	2	1	2				
	3	1	3				
	4	1	4	2			
	5	1	5	5			
	6	1	6	9	2		
	7	1	7	14	7		
	8	1	8	20	16	2	
	9	1	9	27	30	9	
	10	1	10	35	50	25	2
	11	1	11	44	77	55	11
	a de la	•	• • • • • •	• • • •	• • •	• . • . • . •	•••
	Table	2.	Values	of v_{kr}	(k = 1,	2,	, 11)

50

[Feb.

1982]

Coefficients in the generating difference equations (4.2), as k varies, appear in Table 2 if we alternate + and - signs. Corresponding characteristic polynomials occur in [4] as proper divisors, or as products of proper divisors. Refer to Hancock [1], also.

Further, it might be noted that, if we employ the recurrence relation in (4.1) repeated.y, we may expand U_{nm} binomially as

$$\begin{aligned} U_{nm} &= U_{n-t, m-t} + \binom{2t}{1} U_{n-t, m-t+1} + \binom{2t}{2} U_{n-t, m-t+2} + \cdots \\ &+ \binom{2t}{1} U_{n-t, m+t+1} + U_{n-t, m+t} \quad (1 \le t < n, \ 1 \le t < m). \end{aligned}$$

This is because the original recurrence relation (4.1) for U_{nm} is "binomial" (t = 1), i.e., the coefficients are 1, 2, 1.

Finally, we remark that the row elements in the first column, U_{n1} , given in (4.2), are related to the *Catalan numbers* C_n by

(5.5)
$$U_{n1} = (n+1)C_n$$

ACKNOWLEDGMENT

The authors wish to thank the referee for his comments, which have improved the presentation of this paper.

REFERENCES

- 1. H. Hancock. "Trigonometric Realms of Rationality." Rendiconti del Circolo Matematico di Palermo 49 (1925):263-76.
- 2. V. E. Hoggatt, Jr. & Marjorie Bicknell. "Roots of Fibonacci Polynomials." *The Fibonacci Quarterly* 11, no. 3 (1973):271-74.
- A. F. Horadam, R. P. Loh, & A. G. Shannon. "Divisibility Properties of Some Fibonacci-Type Sequences." Combinatorial Mathematics VI: Proceedings, Armidale, August, 1978. (Lecture Notes in Mathematics, Vol. 748, pp. 55-64.) Berlin: Springer-Verlag, 1979.
- A. F. Horadam & A. G. Shannon. "Irrational Sequence-Generated Factors of Integers." The Fibonacci Quarterly 19, no. 3 (1981):240-50.
- 5. L. G. Wilson. Private correspondence.

ONE-PILE TIME AND SIZE DEPENDENT TAKE-AWAY GAMES

JIM FLANIGAN

University of California at Los Angeles, Los Angeles, CA 90024 (Submitted July 1980)

1. INTRODUCTION

In a one-pile take-away game, two players alternately remove chips from a single pile of chips. Depending on the particular formulation of play, a *constraint function* specifies the number of chips which may be taken from the pile in each position. The game ends when no move is possible. In *normal* (*misère*) play, the player who makes the final move wins (loses). Necessarily, one of the players has a strategy which can force a win.

In this *Quarterly*, Whinihan [7], Schwenk [5], and Epp & Ferguson [2] have analyzed certain one-pile take-away games which can be represented by an ordered