Assume that $(t+1, n-1, f) \varepsilon A$. Then $\beta^{\prime}$ is odd. Set $\tilde{E}_{t, \beta^{\prime}+1}=E_{t+1, \beta^{\prime}}+1$. Since $E_{t+1, \beta^{\prime}} \geq n-1$, we have

Consequently,

$$
\begin{gather*}
\tilde{E}_{t, B^{\prime}+1} \geq n  \tag{3}\\
\tilde{E}_{t, B^{\prime}+1}>E_{t, \alpha} \tag{4}
\end{gather*}
$$

By the maximality of $\alpha$, the minimality of $\beta$, and (4), we conclude that $E_{t, \beta^{\prime}+1}>0$ (and, of course, $E_{t, \beta^{\prime}+1}=\tilde{E}_{t, \beta^{\prime}+1}$ ). But $\beta^{\prime}+1$ is even, $\beta$ is odd, and $\beta^{\prime}+1 \leq \beta$. Hence, we also have $\beta^{\prime}+1<\beta$. $\beta^{\prime}+1<\beta$ and (3) contradict the minimality of $\beta$. We conclude that $(t+1, n-1, f) \notin A$.

We have shown that, in both Case b.l and Case b.2, statement (b) holds.
c. Suppose $(t, n, f) \notin A$. If $n=0$, statement (c) is vacuous. So assume $n>0$. Observe that $\beta$ is even and that $\beta>0$. Let $\gamma=\gamma(t, n, f)$. If $\gamma=0$, then $E_{t, \gamma+1}>0$. If $\gamma>0$, then $\gamma$ even and $E_{t+1, \gamma}>0$ imply that $E_{t, \gamma+1}>0$ by Lemma 6.2. Thus, in either case, $E_{t, \gamma+1}>0$. So $\gamma+1 \leq \alpha$ by the maximality of $\alpha$, the minimality of $\beta$, and the fact that $\alpha+1<\beta$.

Now $0<E_{t, \gamma+1} \leq E_{t, \alpha}<n$ and $\gamma$ even imply that

$$
\begin{equation*}
n-f(t, n)>E_{t+1, \gamma} \tag{5}
\end{equation*}
$$

by (a) of Lemma 6.1. Since $n \leq E_{t, \beta}=E_{t+1, \beta-1}+1$, $n-1 \leq E_{t+1, \beta-1}$. Combine this with (5) to get

$$
E_{t+1, \gamma}<n-u \leq E_{t+1, \beta-1} \forall u \neq 1 \leq u \leq f(t, n)
$$

Thus, $\beta(t+1, n-u, f)$ is odd $\forall u \ni 1 \leq u \leq f(t, n)$. We have shown that

$$
F(t, n, f) \subseteq A
$$

which verifies statement (c). Q.E.D.

## REFERENCES

1. J. H. Conway. On Numbers and Games. London: Academic Press, 1976.
2. R. J. Epp \& T. S. Ferguson. "A Note on Take-Away Games." The Fibonacci Quarterly 18. no. 4 (1980):300-304.
3. J.A. Flanigan. "Generalized Two-Pile Fibonacci Nim." The Fibonacci Quarterly 16, no. 5 (1978):459-69.
4. J. A. Flanigan. "An Analysis of Some Take-Away and Loopy Partizan Graph Games." Ph.D. Dissertation, U.C.L.A., 1979.
5. A. J. Schwenk. "Take-Away Games." The Fibonacci Quarterly 8, no. 3 (1970): 225-34.
6. D. L. Silverman. Your Move. New York: McGraw-Hill, 1971.
7. M. J. Whinihan. "Fibonacci Nim." The Fibonacci Quarterly 1, no. 4 (1963):913.
*****

FIBONACCI-CAYLEY NUMBERS
P. V. SATYANARAYANA MURTHY
S.K.B.R. College, Amalapuram-533 201, India
(Submitted August 1980)
Horadam [2] defined and studied in detail the generalized Fibonacci sequence defined by

$$
H_{n}=H_{n-1}+H_{n-2} \quad(n>2),
$$

with $H_{1}=p, H_{2}=p+q, p$ and $q$ being arbitrary integers. In a later article [3] he defined Fibonacci and generalized Fibonacci quaternions as follows, and established a few relations for these quaternions:
and

$$
\begin{equation*}
P_{n}=H_{n}+H_{n+1} i_{1}+H_{n+2} i_{2}+H_{n+3} i_{3}, \tag{2}
\end{equation*}
$$

(3)

$$
Q_{n}=F_{n}+F_{n+1} i_{1}+F_{n+2} i_{2}+F_{n+3} i_{3},
$$

where

$$
i_{1}^{2}=i_{2}^{2}=i_{3}^{2}=-1, i_{1} i_{2}=-i_{2} i_{1}=i_{3},
$$

and

$$
i_{2} i_{3}=-i_{3} i_{2}=i_{1}, \quad i_{3} i_{1}=-i_{1} i_{3}=i_{2}
$$

and $\left\{F_{n}\right\}$ is the Fibonacci sequence defined by

$$
F_{1}=F_{2}=1 \quad \text { and } \quad F_{n}=F_{n-1}+F_{n-2} \quad(n>2) .
$$

He also defined the conjugate quaternion as

$$
\begin{equation*}
\bar{P}_{n}=H_{n}-H_{n+1} i_{1}-H_{n+2} i_{2}-H_{n+3} i_{3} \tag{4}
\end{equation*}
$$

and $\bar{Q}_{n}$ in a similar way. M. N. S. Swamy [5] obtained some additional relations for these quaternions.

In Section 1 of this paper we define the Fibonacci and generalized FibonacciCayley numbers. In Section 2, we obtain a further generalization of these numbers as well as of the complex Fibonacci numbers and Fibonacci quaternions discussed in [3] and [5].

## SECTION 1

We call
(5)
and (6)

$$
\begin{aligned}
& R_{n}=F_{n}+F_{n+1} i_{1}+\cdots+F_{n+7} i_{7} \\
& S_{n}=H_{n}+H_{n+1} i_{1}+\cdots+H_{n+7} i_{7}
\end{aligned}
$$

$$
i_{1}^{2}=\cdots=i_{7}^{2}=-1, \quad i_{1} i_{2}=i_{3}=-i_{2} i_{1}
$$

$$
i_{2} i_{3}=i_{1}=-i_{3} i_{2}, \quad i_{3} i_{1}=i_{2}=-i_{1} i_{3}
$$

and six similar sets of six relations with $1,2,3$ replaced by $1,4,5 ; 6,2,4 ;$ 6, 5, 3; 7, 2, 5; 7, 3, 4; and 1, 7, 6, respectively (see [1]), nth Fibonacci and generalized Fibonacci-Cayley numbers, respectively. We define conjugate Cayley numbers as

$$
\begin{equation*}
\bar{S}_{n}=H_{n}-H_{n+1} i_{1}-\cdots-H_{n+7} i_{7}, \tag{7}
\end{equation*}
$$

and $\bar{R}_{n}$ in a similar way, so that

$$
\begin{align*}
& \qquad \begin{aligned}
S_{n} \bar{S}_{n}= & \sum_{i=0}^{7} H_{n+i}^{2}=\left[H_{n}^{2}+\right. \\
= & \left.H_{n+1}^{2}+H_{n+2}^{2}+H_{n+3}^{2}\right]+\left[H_{n+4}^{2}+H_{n+5}^{2}+H_{n+6}^{2}+H_{n+7}^{2}\right] \\
& P_{n} \bar{P}_{n}+P_{n+4} \bar{P}_{n+4}= \\
& 3\left[(2 p-q) H_{2 n+3}-\left(p^{2}-p q-q^{2}\right) F_{2 n+3}\right] \\
& +3\left[(2 p-q) H_{2 n+11}-\left(p^{2}-p q-q^{2}\right) F_{2 n+11}\right] \\
& \quad(\text { using Eq. } 15 \text { of }[5])
\end{aligned} \\
& \begin{aligned}
&(8) \quad 3\left[( 2 p - q ) \left(H_{2 n+3}+\right.\right. \\
&\left.\left.S_{n}+H_{2 n+11}\right)-\left(p^{2}-p q-q^{2}\right)\left(F_{2 n+3}+F_{2 n+11}\right)\right]
\end{aligned} \\
& (9) \quad 2 H_{n} \text { implies }
\end{align*}
$$

Since

$$
\begin{equation*}
H_{m+n+1}=F_{m+1} H_{n+1}+F_{m} H_{n}=F_{n+1} H_{m+1}+F_{n} H_{m} \tag{10}
\end{equation*}
$$

(see [2]), we have

$$
\begin{aligned}
F_{m+1} S_{n+1}+F_{m} S_{n}= & \left(F_{m+1} H_{n+1}+F_{m} H_{n}\right)+\cdots+\left(F_{m+1} H_{n+4}+F_{m} H_{n+3}\right) i_{3} \\
& +\left(F_{m+1} H_{n+5}+F_{m} H_{n+4}\right) i_{4}+\cdots+\left(F_{m+1} H_{n+8}+F_{m} H_{n+7}\right) i_{7} \\
= & H_{m+n+1}+H_{m+n+2} i_{1}+\cdots+H_{m+n+8} i_{7} \\
= & S_{m+n+1},
\end{aligned}
$$

so that

$$
\begin{equation*}
S_{m+n+1}=F_{m+1} S_{n+1}+F_{m} S_{n}=F_{n+1} S_{m+1}+F_{n} S_{m} . \tag{11}
\end{equation*}
$$

This implies
and

$$
S_{2 n+1}=F_{n+1} S_{n+1}+F_{n} S_{n}
$$

Again, since

$$
S_{2 n}=F_{n+1} S_{n}+F_{n} S_{n-1}=F_{n} S_{n+1}+F_{n-1} S_{n} .
$$

$$
\begin{equation*}
H_{n+1}=q F_{n}+p F_{n+1} \tag{12}
\end{equation*}
$$

(Eq. 7 of [2]), we have

$$
\begin{aligned}
H_{m+1} S_{n+1}+H_{m} S_{n} & =\left(q F_{m}+p F_{m+1}\right) S_{n+1}+\left(q F_{m-1}+p F_{m}\right) S_{n} \\
& =p\left(F_{m+1} S_{n+1}+F_{m} S_{n}\right)+q\left(F_{m} S_{n-1}+F_{m-1} S_{n}\right) \\
& =p S_{m+n+1}+q S_{m+n}[\text { by }(11)] .
\end{aligned}
$$

Using (8) and (12) above and Eq. 17 of [5], we get
(14) $S_{n} \bar{S}_{n}=3\left[p^{2} F_{2 n+3}+2 p q F_{2 n+2}+q^{2} F_{2 n+1}+p^{2} F_{2 n+11}+2 p q F_{2 n+10}+q^{2} F_{2 n+9}\right]$

$$
=3\left[p^{2}\left(F_{2 n+3}+F_{2 n+11}\right)+2 p q\left(F_{2 n+2}+F_{2 n+10}\right)+q^{2}\left(F_{2 n+1}+F_{2 n+9}\right)\right] .
$$

Hence

$$
\begin{align*}
S_{n} \bar{S}_{n}+S_{n-1} \bar{S}_{n-1}= & 3\left[p^{2}\left(F_{2 n+3}+F_{2 n+11}+F_{2 n+1}+F_{2 n+9}\right)\right. \\
& +2 p q\left(F_{2 n+2}+F_{2 n+10}+F_{2 n}+F_{2 n+8}\right) \\
& \left.+q^{2}\left(F_{2 n+1}+F_{2 n+9}+F_{2 n+1}+F_{2 n+7}\right)\right]  \tag{15}\\
= & 3\left[p^{2}\left(L_{2 n+2}+L_{2 n+10}\right)+2 p q\left(L_{2 n+1}+L_{2 n+9}\right)\right. \\
& \left.+q^{2}\left(L_{2 n}+L_{2 n+8}\right)\right],
\end{align*}
$$

since $L_{n}=F_{n-1}+F_{n+1}$, where $\left\{L_{n}\right\}$ is the Lucas sequence defined by

$$
L_{1}=1, L_{2}=3, L_{n}=L_{n-1}+L_{n-2} \quad(n>2) .
$$

From (9), (13), and (15), we have

$$
\begin{aligned}
S_{n}^{2}+S_{n-1}^{2}= & 2\left(H_{n} S_{n}+H_{n-1} S_{n-1}\right)-\left(S_{n} \bar{S}_{n}+S_{n-1} \bar{S}_{n-1}\right) \\
= & 2\left(p S_{2 n-1}+q S_{2 n-2}\right)-3\left[p^{2}\left(L_{2 n+2}+L_{2 n+10}\right)\right.
\end{aligned}
$$

Analogous to Eq. 16 of [2], we have

$$
\begin{equation*}
\left\{2 S_{n+1} S_{n+2}\right\}^{2}+\left\{S_{n} S_{n+3}\right\}^{2}=\left\{2 S_{n+1} S_{n+2}+S_{n}\right\}^{2} \tag{17}
\end{equation*}
$$

Using (11), we can establish the identity analogous to Eq. 17 of [2]:

$$
\begin{equation*}
\frac{S_{n+t}+(-1) S_{n-t}}{S_{n}}=F_{t-1}+F_{t+1} . \tag{18}
\end{equation*}
$$

If $p=1, q=0$, then we have the Fibonacci sequence $\left\{F_{n}\right\}$ and the corresponding Cayley number $R_{n}$ for which we may write the following results:

$$
\begin{align*}
& R_{n} \bar{R}_{n}=\bar{R}_{n} R_{n}=3\left(F_{2 n+3}+F_{2 n+11}\right)  \tag{19}\\
& R_{n} \bar{R}_{n}+R_{n-1} \bar{R}_{n-1}=3\left(L_{2 n+2}+L_{2 n+10}\right)  \tag{20}\\
& R_{n}^{2}+R_{n-1}^{2}=2 R_{2 n-1}-3\left(L_{2 n+2}+L_{2 n+10}\right) . \tag{21}
\end{align*}
$$

Similar results may be obtained for the Lucas numbers and the corresponding Cayley numbers by letting $p=1$ and $q=2$ in the various results derived above.

## SECTION 2

A. The following facts about composition algebras over the field of real numbers (the details of which can be found in [4]) are needed to obtain further generalization of complex Fibonacci numbers, Fibonacci quaternions, and Fibonacci-Cayley numbers.

1. The 2-dimensional algebra over the field $R$ of real numbers with basis $\{1$, $\left.i_{1}\right\}$ and multiplication table

|  | 1 | $i_{1}$ |
| :---: | :---: | :---: |
| 1 | 1 | $i_{1}$ |
| $i_{1}$ | $i_{1}$ | $-\alpha$ |

( $\alpha$ being any nonzero real number).
We denote this algebra by $C(\alpha)$. The conjugate of $x=a_{0}+a_{1} i_{1}$ is $\bar{x}=a_{0}-a_{1} i_{1}$ and $x \bar{x}=\bar{x} x=a_{0}^{2}+\alpha a_{1}^{2}$.
2. The 4-dimensional algebra (over $R$ ) with basis $\left\{1, i_{1}, i_{2}, i_{3}\right\}$ and multiplication table

|  | 1 | $i_{1}$ | $i_{2}$ | $i_{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | $i_{1}$ | $i_{2}$ | $i_{3}$ |
| $i_{1}$ | $i_{1}$ | $-\alpha$ | $i_{3}$ | $-\alpha i_{2}$ |
| $i_{2}$ | $i_{2}$ | $-i_{3}$ | $-\beta$ | $\beta i_{1}$ |
| $i_{3}$ | $i_{3}$ | $\alpha i_{2}$ | $-\beta i_{1}$ | $-\alpha \beta$ |

( $\alpha, \beta$ any nonzero real numbers).
We denote this algebra by $C(\alpha, \beta)$. The conjugate of $x=a_{0}+a_{1} i_{1}+a_{2} i_{2}+a_{3} i_{3}$ is $\bar{x}=a_{0}-\alpha_{1} i_{1}-\alpha_{2} i_{2}-\alpha_{3} i_{3}$ and $x \bar{x}=\bar{x} x=\alpha_{0}^{2}+\alpha \alpha_{1}^{2}+\beta \alpha_{2}^{2}+\alpha \beta a_{3}^{2}$.
3. The 8 -dimensional algebra (over $R$ ) with basis $\left\{1, i_{1}, \ldots, i_{7}\right\}$ and multiplication table

|  | $i_{1}$ | $i_{2}$ | $i_{3}$ | $i_{4}$ | $i_{5}$ | $i_{6}$ | $i_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $i_{1}$ | - $\alpha$ | $i_{3}$ | $-\alpha i_{2}$ | $i_{5}$ | $-\alpha i_{4}$ | $-i_{7}$ | $\alpha i_{6}$ |
| $i_{2}$ | $-i_{3}$ | - $\beta$ | $\beta i_{1}$ | $i_{6}$ | $i_{7}$ | $-\beta i_{4}$ | $-\beta i_{5}$ |
| $i_{3}$ | $\alpha i_{2}$ | $-\beta i_{1}$ | $-\alpha \beta$ | $i_{7}$ | $-\alpha i_{6}$ | $\beta i_{5}$ | $-\alpha \beta i_{4}$ |
| $i_{4}$ | $-i_{5}$ | $-i_{6}$ | $-i_{7}$ | $-\gamma$ | $\gamma i_{1}$ | $\gamma i_{2}$ | $\gamma i_{3}$ |
| $i_{5}$ | $\alpha i_{4}$ | $-i_{7}$ | $\alpha i_{6}$ | $-\gamma i_{1}$ | - $\alpha \gamma$ | $-\gamma i_{3}$ | $\mathrm{rai}_{2}$ |
| $i_{6}$ | $i_{7}$ | $B i_{4}$ | $-\beta i_{5}$ | $-\gamma i_{2}$ | $\gamma i_{3}$ | $-\gamma \beta$ | $-\gamma \beta i_{1}$ |
| $i_{7}$ | $-\alpha i_{6}$ | $\beta i_{5}$ | $\alpha \beta i_{4}$ | $-\gamma i_{3}$ | $-\gamma \alpha i_{2}$ | $\gamma \beta i_{1}$ | $-\alpha \beta \gamma$ |

We denote this algebra by $C(\alpha, \beta, \gamma)$. The conjugate of $x=a_{0}+a_{1} i_{1}+\cdots+a_{7} i_{7}$ is $\bar{x}=a_{0}-a_{1} i_{1}-\cdots-a_{7} i_{7}$ and $x \bar{x}=\bar{x} x=\left(\alpha_{0}^{2}+\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}\right)+\gamma\left(\alpha_{4}^{2}+\alpha \alpha_{5}^{2}+\right.$ $\left.\beta a_{6}^{2}+\alpha \beta a_{7}^{2}\right)$.
B. Next we shall consider the following generalizations of $H_{n}, F_{n}$, and $L_{n}$, respectively:

$$
\begin{array}{ll}
h_{n}: h_{1}=p, h_{2}=b p+c q, h_{n}=b h_{n-1}+c h_{n-2} & (n>2) \\
f_{n}: f_{1}=1, f_{2}=b, f_{n}=b f_{n-1}+c f_{n-2} & (n>2) \\
l_{n}: l_{1}=b, l_{2}=b^{2}+2 c, l_{n}=b l_{n-1}+c l_{n-2} & (n>2)
\end{array}
$$

( $b, c, p, q$ being integers).
Then we have the following various relations:

$$
\begin{aligned}
h_{n} & =p f_{n}+q c f_{n-1} \\
l_{n} & =f_{n+1}+c f_{n-1} \\
p h_{2 n-2}+c q h_{2 n-3} & =h_{n-1}\left(c h_{n-2}+h_{n}\right) \\
c h_{n}^{2}+h_{n+1}^{2}=p h_{2 n+1}+c q h_{2 n} & =(2 p-b q) h_{2 n+1}-e f_{2 n+1}
\end{aligned}
$$

where $e=p^{2}-b p q-c q^{2}$.

$$
\begin{aligned}
h_{n} h_{n+1}-c^{2} h_{n-2} h_{n-1} & =b\left(p h_{2 n-1}+q c h_{2 n-2}\right) \\
h_{n+1}^{2}-c^{2} h_{n-1}^{2} & =b\left(p h_{2 n}+c q h_{2 n-1}\right)=b(2 p-b q) h_{2 n}-b e f_{2 n} \\
h_{n-1} h_{n+1}-h_{n}^{2} & =(-c)^{n} e \\
f_{n-1} f_{n+1}-f_{n}^{2} & =(-c)^{n} \\
h_{n+t} & =c h_{n-1} f_{t}+h_{n} f_{t+1}=c h_{t-1} f_{n}+h_{t} f_{n+1} \\
\frac{h_{n+t}-(-c)^{t+1} h_{n-t}}{h_{n}} & =c f_{t-1}+f_{t+1} .
\end{aligned}
$$

We now define the $n$th generalized complex Fibonacci number $d_{n}$ as the element $h_{n}+h_{n+1} i_{1}$ of the algebra $C(1 / c)$; the $n$th generalized Fibonacci quaternion $p_{n}$ as the element $h_{n}+h_{n+1} i_{1}+h_{n+2} i_{2}+h_{n+3} i_{3}$ of the algebra $C(1 / c, 1)$; and the $n$th generalized Fibonacci-Cayley number $s_{n}$ as the eIement $h_{n}+h_{n+1} i_{1}+\cdots+h_{n+7} i_{7}$ of the algebra $C(1 / c, 1,1)$.

The following is a list of relations for these numbers:

$$
\begin{aligned}
d_{n-1} d_{n+1}-d_{n}^{2} & =(-c)^{n} e\left(2+b i_{1}\right) \\
d_{n} \bar{d}_{n}=\bar{d}_{n} d_{n} & =h_{n}^{2}+\frac{1}{c} h_{n+1}^{2} \\
& =\frac{1}{c}\left(p h_{2 n+1}+c q h_{2 n}\right)=\frac{1}{c}\left[(2 p-b q) h_{2 n+1}-e f_{2 n+1}\right] \\
& =\frac{1}{c}\left[\left(p^{2}+c q^{2}\right) f_{2 n+1}+c q(2 p-b q) f_{2 n}\right] \\
d_{n} \bar{d}_{n}+c d_{n-1} \bar{d}_{n-1} & =\frac{1}{c}\left[\left(p^{2}+c q^{2}\right)\left(f_{2 n+1}+c f_{2 n-1}\right)+q c(2 p-b q)\left(f_{2 n}+c f_{2 n-2}\right)\right] \\
& =\frac{1}{c}\left[\left(p^{2}+c q^{2}\right) l_{2 n}+q c(2 p-b q) l_{2 n-1}\right] \\
h_{m+1} d_{n+1}+c h_{m} d_{n} & =p d_{m+n+1}+q c d_{m+n} \\
d_{n}^{2}+c d_{n-1}^{2} & =2\left(p d_{2 n-1}+q c d_{2 n-2}\right)-\frac{1}{c}\left[\left(p^{2}+c q^{2}\right) l_{2 n}+q c(2 p-b q) l_{2 n-1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& d_{n+1}^{2}-c^{2} d_{n-1}^{2}=-\frac{b^{2}}{c}(2 p-b q) h_{2 n+1}+\frac{b^{2} e}{c} f_{2 n+1}+2 b\left(p h_{2 n+1}+q c h_{2 n}\right) i_{1} . \\
& \frac{d_{n+t}-(-c)^{t+1} d_{n-t}}{d_{n}}=c f_{t-1}+f_{t+1} \cdot \\
& p_{n} \bar{p}_{n}=d_{n} \bar{d}_{n}+d_{n+2} \bar{d}_{n+2}=\frac{1}{c}\left[(2 p-b q)\left(h_{2 n+1}+h_{2 n+5}\right)-e\left(f_{2 n+1}+f_{2 n+5}\right)\right] \\
&=\frac{1}{c}\left[\left(p^{2}+c q^{2}\right)\left(f_{2 n+1}+f_{2 n+5}\right)+c q(2 p-b q)\left(f_{2 n}+f_{2 n+4}\right)\right] . \\
& p_{n} \bar{p}_{n}+c p_{n-1} \bar{p}_{n-1}=\frac{1}{c}\left[\left(p^{2}+c q^{2}\right)\left(l_{2 n}+l_{2 n+4}\right)+c q(2 p-b q)\left(l_{2 n-1}+\ell_{2 n+3}\right)\right] . \\
& p_{m+n+1}=f_{m+1} p_{n+1}+c f_{m} p_{n}=f_{n+1} p_{m+1}+c f_{n} p_{m} . \\
& h_{m+1} p_{n+1}+c h_{m} p_{n}=p p_{m+n+1}+q c p_{m+n} . \\
& p_{n}^{2}+c p_{n-1}^{2}=p p_{2 n-1}+q c p_{2 n-2}-\left(p_{n} \bar{p}_{n}+c p_{n-1} \bar{p}_{n-1}\right) . \\
& p_{n+t}-(-c)^{t+1} p_{n-t}=c f_{t-1}+f_{t+1} . \\
& p_{n} \\
& s_{n} \bar{s}_{n}=p_{n} \bar{p}_{n}+p_{n+4} \bar{p}_{n+4} . \\
& s_{n} \bar{s}_{n}+c s_{n-1} \bar{s}_{n-1}=p_{n} \bar{p}_{n}+c p_{n-1} \bar{p}_{n-1}+p_{n+4} \bar{p}_{n+4}+c p_{n+3} \bar{p}_{n+3} . \\
& s_{m+n+1}=f_{m+1} s_{n+1}+c f_{m} s_{n}=f_{n+1} s_{m+1}+c f_{n} s_{m} . \\
& h_{m+1} s_{n+1}+c h_{m} s_{n}=p s_{m+n+1}+q c s_{m+n} . \\
& s_{n}^{2}+c s_{n-1}^{2}=p s_{2 n-1}+q c s_{2 n-2}-\left(s_{n} \bar{s}_{n}+c s_{n-1} \bar{s}_{n-1}\right) . \\
& s_{n+t}-(-c)^{t+1} s_{n-t} \\
& s_{n}=c f_{t-1}+f_{t+1} .
\end{aligned}
$$

## ACKNOWLEDGMENT

I am thankful to Professor P. S. Rema for her help in the preparation of this paper.

## REFERENCES

1. L. E. Dickson. "On Quaternions and Their Generalization to the History of the Eight Square Theorem." Ann. of Math. 20 (1919):155-71.
2. A. F. Horadam. "A Generalized Fibonacci Sequence." Amer. Math. Monthly 68 (1961):455-59.
3. A. F. Horadam. "Complex Fibonacci Numbers and Fibonacci Quaternions." Amer. Math. Monthly 70 (1963):289-91.
4. N. Jacobson. "Composition Algebras and Their Automorphisms." Rend. Circ. Mat. Palermo 7 (1958):55-80.
5. M. N. S. Swamy. "On Generalized Fibonacci Quaternions." The Fibonacci Quarterly 11, no. 6 (1973):547-49.
