THE LENGTH OF THE FOUR-NUMBER GAME

WILLIAM A. WEBB Washington State University, Pullman, WA 99163 (Submitted April 1980)

INTRODUCTION

Let D be the operator defined on 4-tuples of nonnegative integers by

$$D(w, x, y, z) = (|w - z|, |w - x|, |x - y|, |y - z|).$$

Given any initial 4-tuple $S = S_0 = (w_0, x_0, y_0, z_0)$, we obtain a sequence $\{S_n\}$, where $S_{n+1} = DS_n$. This sequence is sometimes called the four-number game. The following curious fact seems to have been discovered and rediscovered several times—[3], [4], [5]— $S_n = (0, 0, 0, 0)$ for all sufficiently large n. We can thus make the following definition.

DEFINITION: The length of the sequence $\{S_n\}$, denoted L(S), is the smallest n such that $S_n = (0, 0, 0, 0)$.

A natural question to ask is: "How long can a game continue before all zeros are reached?" Again, it is well known that the length can be arbitrarily long if the numbers in S_n are sufficiently large [4]. One of the easiest ways to see this makes use of the so-called Tribonacci numbers:

$$t_0 = 0, t_1 = 1, t_2 = 1$$
 and $t_n = t_{n-1} + t_{n-2} + t_{n-3}$ for $n \ge 3$.

If we let $T_n = (t_n, t_{n-1}, t_{n-2}, t_{n-3})$, then a simple calculation shows that $D^{3}T = 2T$

and so

$$L(T_n) = 3\left[\frac{n}{2}\right].$$

It has also been noticed that the sequence beginning with some T_n seems to have the longest length of any sequence whose original elements do not exceed t_n . We will prove that this is almost true.

It should be pointed out that if we allow the elements of S_0 to be real, then we can obtain a game of infinite length by taking $S_0 = (r^3, r^2, r, 1)$, where r =1.839... is the real root of the equation $x^3 - x^2 - x - 1 = 0$ (see [2], [6], [7]). Moreover, this is essentially the only way to obtain a game of infinite length [7]. To obtain a long game with integer entries, we should pick the initial terms to have ratios approximating r [1]. The Tribonacci numbers do this very nicely.

MAIN RESULT

Before proving our main theorem, we need a few easy observations. If

$$|S| = \max(w, x, y, z),$$

then

$$|S_0| \ge |S_1| \ge |S_2| \dots$$

The games having initial elements

$$(w, x, y, z), (x, y, z, w), (y, z, w, x), (z, w, x, y);$$

 $(z, y, x, w); (w + k, x + k, y + k, z + k);$

and (kw, kx, ky, kz), k > 0;

all have the same length. We now state our main theorem which will be an immediate consequence of Theorem 2.

THEOREM 1: If
$$|S| \leq |T_n|$$
, then $L(S) \leq L(T_n) + 1 = 3\left[\frac{n}{2}\right] + 1$.

One of the first things to notice is that $L(S) \leq 6$, unless the elements of S are monotonically decreasing, w > x > y > z. [Remember, cyclic permutations and reversals yield equivalent games, so $(5, 7, 12, 2) \sim (2, 5, 7, 12) \sim (12, 7, 5, 2)$, which is monotonically decreasing.) This can be checked by simply calculating the first six S_n if S_0 is not monotonic [1]. Also, if S_n is monotonic decreasing, then S_{n+1} cannot be monotonic increasing. Therefore, in a long game, all of the S_n at the beginning must be monotonic decreasing.

Let $S_n = (w_n, x_n, y_n, z_n)$. We say that S_n is additive if $w_n = x_n + y_n + z_n$. If S_{n-1} is monotonic (decreasing), then a trivial calculation shows that S_n is additive. Thus, although $S = S_0$ may not be additive, S_1, S_2, \ldots, S_n will be additive as long as $S_0, S_1, \ldots, S_{n-1}$ are monotonic.

LEMMA: If S_1, S_2, \ldots, S_{10} are all monotonic (decreasing), S_1 is additive, and $|S_1| \leq t_n$, then either $|S_4| \leq 2t_{n-2}$ or $|S_7| \leq 4t_{n-4}$ or $|S_{10}| \leq 8t_{n-6}$.

PROOF: Write $S_1 = (a + b + c, a, b, c)$ and assume $a + b + c \le t_n$,

 $|S_4| > 2t_{n-2}, |S_7| > 4t_{n-4}, \text{ and } |S_{10}| > 8t_{n-6}.$

Since we know that $S_1 \dots S_{\rm l\,0}$ are all monotonic, they can be explicitly calculated, and we find that

$$|S_{4}| = 2b$$
, $|S_{7}| = 4a - 4b - 4c$, and $|S_{10}| = 16c - 8b$.

 $\begin{array}{l} |S_4| > 2t_{n-2} \text{ implies } 2b \geq 2t_{n-2} + 2 \text{ or } 3b \geq 3t_{n-2} + 3; \quad |S_7| > 4t_{n-4} \text{ implies } a - b - c \geq t_{n-4} + 1; \quad |S_{10}| > 8t_{n-6} \text{ implies } 2c - b \geq t_{n-6} + 1. \quad \text{Adding these three inequalities, we obtain} \end{array}$

$$a + b + c \ge 3t_{n-2} + t_{n-4} + t_{n-6} + 5.$$

But since $a + b + c \leq t_n$, we have

$$t_n = t_{n-1} + t_{n-2} + t_{n-3} \ge 3t_{n-2} + t_{n-4} + t_{n-6} + 5.$$

Using the defining relation of the Tribonacci numbers repeatedly, we get

$$2t_{n-3} \ge 2t_{n-3} + 5$$
,

which is an obvious contradiction. This proves the lemma.

THEOREM 2: If S_1 is additive and $|S_1| \leq t_n$, then $L(S_1) \leq L(T_n) = 3 \lfloor \frac{n}{2} \rfloor$, $n \geq 2$.

PROOF: Since S_1 is additive, we may write $S_1 = (a + b + c, a, b, c)$, where $t_{n-1} < a + b + c \leq t_n$. We use induction on n. We can check the first 'few' cases (by computer) and see that the theorem is true for $n = 2, 3, \ldots, 9$. (That is, $|S_1| \leq 81$.) Now, assume the result is true for all S_1 such that $|S_1| \leq t_k$, where $k < n, n \geq 10$.

If S_1 , ..., S_{10} are all monotonic, then, by the induction hypothesis and the lemma, either

$$L(S_1) = L(S_4) + 3 \le 3\left\lfloor \frac{n-2}{2} \right\rfloor + 3 = 3\left\lfloor \frac{n}{2} \right\rfloor$$
$$L(S_1) = L(S_7) + 6 \le 3\left\lfloor \frac{n-4}{2} \right\rfloor + 6 = 3\left\lfloor \frac{n}{2} \right\rfloor$$
$$L(S_1) = L(S_{10}) + 9 \le 3\left\lfloor \frac{n-6}{2} \right\rfloor + 9 = 3\left\lfloor \frac{n}{2} \right\rfloor$$

Here we have used the fact that 2^t divides every element of S_{3t+1} , $t \ge 1$. Thus, for example, $S_4 = 2S_4^*$ and $L(S_4) = L(S_4^*)$. If $|S_4| \le 2t_{n-2}$, then $|S_4^*| \le t_{n-2}$, and so

$$L(S_{4}^{\star}) \leq L(T_{n-2}) = 3\left\lfloor \frac{n-2}{2} \right\rfloor,$$

or

or

by the induction hypothesis, taking S_{4}^{*} as our 'new' S_{7} . Thus, in any case,

$$G(S_1) \leq 3\left[\frac{n}{2}\right].$$

If S_1, \ldots, S_{10} are not all monotonic, let S_j be the first which is nonmonotonic. Then

$$L(S_1) = L(S_j) + (j - 1) \le 6 + j - 1 = j + 5 \le 15,$$

since $L(S_j) \leq 6$ whenever S_j is not monotonic. But since $n \geq 10$,

1

$$L(T_n) = 3\left[\frac{n}{2}\right] \ge 15,$$

so $L(S_1) \leq L(T_n)$.

1982]

This completes the proof of Theorem 2.

Theorem 1 is now an easy corollary, since: if S_{0} is monotonic decreasing and $|S_0| \leq |T_n|$, then $|S_1| \leq |T_n|$ and S_1 is additive. If S_0 is not monotonic decreasing, then $L(S_0) \leq 6$.

There actually are examples where $L(S) = L(T_n) + 1$:

$$L(T_6) = L(13, 7, 4, 2) = 9 \text{ and } L(13, 6, 2, 0) = 10.$$

Ly,

$$L(a + b + c, b + c, c, 0) = L(a + b + c, a, b, c) + 1;$$

$$L(t_n, t_{n-2} + t_{n-3}, t_{n-3}, 0) = L(T_n) + 1 = 3\left[\frac{n}{2}\right] + 1.$$

If we begin with a k-tuple of nonnegative integers, then it is known that $S_n = (0, 0, ..., 0)$ for sufficiently large n, provided $k = 2^t$. (If $k \neq 2^t$, the sequence $\{S_n\}$ may cycle [3], [4], [9].) Thus, a natural question to ask is: "What is the maximum length of the eight number game, or, more generally, the 2^t -number game?"

It was already mentioned that if S_1 is additive and leads to a long four-number game, then the ratios of the elements of S_1 should be close to the number r = 1.839.... How accurately can the length of the game be predicted if one knows these ratios?

REFERENCES

- 1. E. R. Berlekamp. "The Design of Slowly Shrinking Labelled Squares." Math. Comp. 29 (1975):25-27.
- 2. M. Bermester, R. Forcade & E. Jacobs. "Circles of Numbers." Glasgow-Math. J. 19 (1978):115-19.
- 3. C. Ciamberlini & A. Marengoni. "Su una interessante curiosità numerica." Period. Mat. Ser. 4 17 (1937):25-30.
- Benedict Freedman. "The Four Number Game." Scripta Math. 14 (1948):35-47.

- R. Honsberger. Ingenuity in Mathematics. New York: Random House, 1970.
 Hans Helmut Lammerich. "Quadrupelfolgen." Praxis der Mathematik (1975), pp. 219-23.
- 7. Moshe Lotan. "A Problem in Differencing Sets." Amer. Math. Monthly 56 (1949): 535-41.
- 8. R. Miller. "A Game with n Numbers." Amer. Math. Monthly 85 (1978):183-85.
- 9. P. Zvengrowski. "Iterated Absolute Differences." Math. Magazine 52 (1979): 36-37.

35