THE LENGTH OF THE FOUR-NUMBER GAME

WILLIAM A. WEBB
Washington State University, Pullman, WA 99163
(Submitted April 1980)

INTRODUCTION

Let D be the operator defined on 4-tuples of nonnegative integers by

$$
D(w, x, y, z)=(|w-z|,|w-x|,|x-y|,|y-z|) .
$$

Given any initial 4-tuple $S=S_{0}=\left(w_{0}, x_{0}, y_{0}, z_{0}\right)$, we obtain a sequence $\left\{S_{n}\right\}$, where $S_{n+1}=D S_{n}$. This sequence is sometimes called the four-number game. The following curious fact seems to have been discovered and rediscovered several times-[3], [4], [5]- $S_{n}=(0,0,0,0)$ for all sufficiently large n. We can thus make the following definition.
DEFINITION: The length of the sequence $\left\{S_{n}\right\}$, denoted $L(S)$, is the smallest n such that $S_{n}=(0,0,0,0)$.

A natural question to ask is: "How long can a game continue before all zeros are reached?" Again, it is well known that the length can be arbitrarily long if the numbers in S_{n} are sufficiently large [4]. One of the easiest ways to see this makes use of the so-called Tribonacci numbers:

$$
t_{0}=0, t_{1}=1, t_{2}=1 \text { and } t_{n}=t_{n-1}+t_{n-2}+t_{n-3} \quad \text { for } n \geq 3
$$

If we let $T_{n}=\left(t_{n}, t_{n-1}, t_{n-2}, t_{n-3}\right)$, then a simple calculation shows that

$$
D^{3} T_{n}=2 T_{n-2},
$$

and so

$$
L\left(T_{n}\right)=3\left[\frac{n}{2}\right]
$$

It has also been noticed that the sequence beginning with some T_{n} seems to have the longest length of any sequence whose original elements do not exceed t_{n}. We will prove that this is almost true.

It should be pointed out that if we allow the elements of S_{0} to be real, then we can obtain a game of infinite length by taking $S_{0}=\left(r^{3}, r^{2}, r, 1\right)$, where $r=$ 1.839... is the real root of the equation $x^{3}-x^{2}-x-1=0$ (see [2], [6], [7]). Moreover, this is essentially the only way to obtain a game of infinite length [7]. To obtain a long game with integer entries, we should pick the initial terms to have ratios approximating r [1]. The Tribonacci numbers do this very nicely.

MAIN RESULT

Before proving our main theorem, we need a few easy observations. If

$$
|S|=\max (w, x, y, z),
$$

then

$$
\left|S_{0}\right| \geq\left|S_{1}\right| \geq\left|S_{2}\right| \ldots
$$

The games having initial elements

$$
\begin{aligned}
& (w, x, y, z),(x, y, z, w),(y, z, w, x),(z, w, x, y) ; \\
& (z, y, x, w) ;(w+k, x+k, y+k, z+k) ; \\
& \text { and } \quad(k w, k x, k y, k z), k>0 ;
\end{aligned}
$$

all have the same length. We now state our main theorem which will be an immediate consequence of Theorem 2 .

THEOREM 1: If $|S| \leq\left|T_{n}\right|$, then $L(S) \leq L\left(T_{n}\right)+1=3\left[\frac{n}{2}\right]+1$.
One of the first things to notice is that $L(S) \leq 6$, unless the elements of S are monotonically decreasing, $\omega>x>y>z$. [Remember, cyclic permutations and reversals yield equivalent games, so $(5,7,12,2) \sim(2,5,7,12) \sim(12,7,5,2)$, which is monotonically decreasing.) This can be checked by simply calculating the first six S_{n} if S_{0} is not monotonic [1]. Also, if S_{n} is monotonic decreasing, then S_{n+1} cannot be monotonic increasing. Therefore, in a long game, all of the S_{n} at the beginning must be monotonic decreasing.

Let $S_{n}=\left(w_{n}, x_{n}, y_{n}, z_{n}\right)$. We say that S_{n} is additive if $w_{n}=x_{n}+y_{n}+z_{n}$. If S_{n-1} is monotonic (decreasing), then a trivial calculation shows that S_{n} is additive. Thus, although $S=S_{0}$ may not be additive, $S_{1}, S_{2}, \ldots, S_{n}$ will be additive as long as $S_{0}, S_{1}, \ldots, S_{n-1}$ are monotonic.
LEMMA: If $S_{1}, S_{2}, \ldots, S_{10}$ are all monotonic (decreasing), S_{1} is additive, and $\left|S_{1}\right| \leq t_{n}$, then either $\left|S_{4}\right| \leq 2 t_{n-2}$ or $\left|S_{7}\right| \leq 4 t_{n-4}$ or $\left|S_{10}\right| \leq 8 t_{n-6}$.

PROOF: Write $S_{1}=(a+b+c, a, b, c)$ and assume $a+b+c \leq t_{n}$,

$$
\left|S_{4}\right|>2 t_{n-2},\left|S_{7}\right|>4 t_{n-4}, \text { and }\left|S_{10}\right|>8 t_{n-6} .
$$

Since we know that $S_{1} \ldots S_{10}$ are all monotonic, they can be explicitly calculated, and we find that

$$
\left|S_{4}\right|=2 b,\left|S_{7}\right|=4 a-4 b-4 c, \text { and }\left|S_{10}\right|=16 c-8 b
$$

$\left|S_{4}\right|>2 t_{n-2}$ implies $2 b \geq 2 t_{n-2}+2$ or $3 b \geq 3 t_{n-2}+3 ;\left|S_{7}\right|>4 t_{n-4}$ implies $a-b-c \geq t_{n-4}+1$; $\left|S_{10}\right|>8 t_{n-6}$ implies $2 c-b \geq t_{n-6}+1$. Adding these three inequalities, we obtain

$$
a+b+c \geq 3 t_{n-2}+t_{n-4}+t_{n-6}+5
$$

But since $a+b+c \leq t_{n}$, we have

$$
t_{n}=t_{n-1}+t_{n-2}+t_{n-3} \geq 3 t_{n-2}+t_{n-4}+t_{n-6}+5
$$

Using the defining relation of the Tribonacci numbers repeatedly, we get

$$
2 t_{n-3} \geq 2 t_{n-3}+5
$$

which is an obvious contradiction. This proves the lemma.
THEOREM 2: If S_{1} is additive and $\left|S_{1}\right| \leq t_{n}$, then $L\left(S_{1}\right) \leq L\left(T_{n}\right)=3\left[\frac{n}{2}\right], n \geq 2$.
PROOF: Since S_{1} is additive, we may write $S_{1}=(a+b+c, a, b, c)$, where $t_{n-1}<a+b+c \leq t_{n}$. We use induction on n. We can check the first 'few' cases (by computer) and see that the theorem is true for $n=2,3, \ldots, 9$. (That is, $\left|S_{1}\right| \leq 81$.) Now, assume the result is true for all S_{1} such that $\left|S_{1}\right| \leq t_{k}$, where $k<n, n \geq 10$.

If S_{1}, \ldots, S_{10} are all monotonic, then, by the induction hypothesis and the lemma, either
or

$$
L\left(S_{1}\right)=L\left(S_{4}\right)+3 \leq 3\left[\frac{n-2}{2}\right]+3=3\left[\frac{n}{2}\right]
$$

$$
L\left(S_{1}\right)=L\left(S_{7}\right)+6 \leq 3\left[\frac{n-4}{2}\right]+6=3\left[\frac{n}{2}\right]
$$

or

$$
L\left(S_{1}\right)=L\left(S_{10}\right)+9 \leq 3\left[\frac{n-6}{2}\right]+9=3\left[\frac{n}{2}\right] .
$$

Here we have used the fact that 2^{t} divides every element of $S_{3 t+1}, t \geq 1$. Thus, for example, $S_{4}=2 S_{4}^{*}$ and $L\left(S_{4}\right)=L\left(S_{4}^{*}\right)$. If $\left|S_{4}\right| \leq 2 t_{n-2}$, then $\left|S_{4}^{\star}\right| \leq t_{n-2}$, and so

$$
L\left(S_{4}^{*}\right) \leq L\left(T_{n-2}\right)=3\left[\frac{n-2}{2}\right],
$$

by the induction hypothesis, taking S_{4}^{*} as our 'new' S_{1}. Thus, in any case,

$$
L\left(S_{1}\right) \leq 3\left[\frac{n}{2}\right] .
$$

If S_{1}, \ldots, S_{10} are not all monotonic, let S_{j} be the first which is nonmonotonic. Then

$$
L\left(S_{1}\right)=L\left(S_{j}\right)+(j-1) \leq 6+j-1=j+5 \leq 15,
$$

since $L\left(S_{j}\right) \leq 6$ whenever S_{j} is not monotonic. But since $n \geq 10$,

$$
L\left(T_{n}\right)=3\left[\frac{n}{2}\right] \geq 15
$$

so $L\left(S_{1}\right) \leq L\left(T_{n}\right)$.
This completes the proof of Theorem 2.
Theorem 1 is now an easy corollary, since: if S_{0} is monotonic decreasing and $\left|S_{0}\right| \leq\left|T_{n}\right|$, then $\left|S_{1}\right| \leq\left|T_{n}\right|$ and S_{1} is additive. If S_{0} is not monotonic decreasing, then $L\left(S_{0}\right) \leq 6$.

There actually are examples where $L(S)=L\left(T_{n}\right)+1$:

$$
\begin{aligned}
& L\left(T_{6}\right)=L(13,7,4,2)=9 \text { and } L(13,6,2,0)=10 \\
& L \mathrm{y}, \\
& L(a+b+c, b+c, c, 0)=L(a+b+c, a, b, c)+1 \\
& L\left(t_{n}, t_{n-2}+t_{n-3}, t_{n-3}, 0\right)=L\left(T_{n}\right)+1=3\left[\frac{n}{2}\right]+1
\end{aligned}
$$

If we begin with a k-tuple of nonnegative integers, then it is known that $S_{n}=(0,0, \ldots, 0)$ for sufficiently large n, provided $k=2^{t}$. (If $k \neq 2^{t}$, the sequence $\left\{S_{n}\right\}$ may cycle [3], [4], [9].) Thus, a natural question to ask is: "What is the maximum length of the eight number game, or, more generally, the 2^{t}-number game?"

It was already mentioned that if S_{1} is additive and leads to a long four-number game, then the ratios of the elements of S_{1} should be close to the number $r=$ 1.839... . How accurately can the length of the game be predicted if one knows these ratios?

REFERENCES

1. E. R. Berlekamp. "The Design of Slowly Shrinking Labelled Squares." Math. Comp. 29 (1975):25-27.
2. M. Bermester, R. Forcade \& E. Jacobs. "Circles of Numbers." Glasgow-Math. J. 19 (1978):115-19.
3. C. Ciamberlini \& A. Marengoni. "Su una interessante curiosità numerica." Period. Mat. Ser. 417 (1937):25-30.
4. Benedict Freedman. "The Four Number Game." Scripta Math. 14 (1948):35-47.
5. R. Honsberger. Ingenuity in Mathematics. New York: Random House, 1970.
6. Hans Helmut Lammerich. "Quadrupe1folgen." Praxis der Mathematik (1975), pp. 219-23.
7. Moshe Lotan. "A Problem in Differencing Sets." Amer. Math. Monthly 56 (1949): 535-41.
8. R. Miller. "A Game with n Numbers." Amer. Math. Monthly 85 (1978):183-85.
9. P. Zvengrowski. "Iterated Absolute Differences." Math. Magazine 52 (1979): 36-37.
