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INTRODUCTION 

Let D be t h e o p e r a t o r def ined on 4 - t u p l e s of nonnega t ive i n t e g e r s by 

D(ws x9 y 9 z) = (\w - z\ 9 \w - x\ s \x ~ y\ 9 \y - z\). 
Given any initial 4-tuple S = SQ = (wQ9 x0s y09 z0)9 we obtain a sequence {/Ŝ }, 
where Sn + 1 = DSn. This sequence is sometimes called the four-number game. The 
following curious fact seems to have been discovered and rediscovered several 
times—-[3], [4], [5]—Sn= (0, 0, 09 0) for all sufficiently large n. We can thus 
make the following definition. 

DEFINITION: The length of the sequence {Sn}9 denoted L(S)9 is the smallest n such 
that Sn = (0, 0, 0, 0). 

A natural question to ask is: "How long can a game continue before all zeros 
are reached?" Again, it is well known that the length can be arbitrarily long if 
the numbers in Sn are sufficiently large [4]. One of the easiest ways to see this 
makes use of the so-called Tribonacci numbers: 

t0 = 0, t1 = 1, t2 = 1 and tn = £n_i + tn_2 + £n-3 f° r n 2. 3. 

If we let Tn = (tn, tn_19 tn_2, tn_3)9 then a simple calculation shows that 

and so _ „ 

L(Tn) = 3[|J. 
It has also been noticed that the sequence beginning with some Tn seems to 

have the longest length of any sequence whose original elements do not exceed t n , 
We will prove that this is almost true. 

It should be pointed out that if we allow the elements of S0 to be real, then 
we can obtain a game of infinite length by taking SQ = (r3, r2

s v9 1)9 where r = 
1.839... is the real root of the equation x 3 - x 2 - x - l = Q (see [2], [6], [7]). 
Moreover, this is essentially the only way to obtain a game of infinite length [7]. 
To obtain a long game with integer entries, we should pick the initial terms to 
have ratios approximating r [1]. The Tribonacci numbers do this very nicely. 

MAIN RESULT 

Before proving our main theorem, we need a few easy observations. If 

\s\ = max(w, x, y, z ) s 

then 
\S,\ 2L \SI\ > \Si\ .*. . 

The games having initial elements 

(w, x, y9 z), (xs ys z9 w), (ys z9 w, x), (z9 w, xs y); 
(z9 y9 x9 w); (w + k9 x + k9 y + k9 z + k); 

and (kw9 kx9 ky9 kz), k > 0; 
all have the same length. We now state our main theorem which will be an immedi-
ate consequence of Theorem 2. 
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THEOREM 1: If \s\ ± \Tn\9 then£(S) <. L(Tn) + 1 = 3[~1 + 1. 

One of the first things to notice is that L(S) <. 6, unless the elements of S 
are monotonically decreasing, w > x > y > z. [Remember, cyclic permutations and 
reversals yield equivalent games, so (5, 7, 12, 2) -(2, 5, 7, 12) -(12, 7, 5, 2), 
which is monotonically decreasing.) This can be checked by simply calculating the 
first six Sn if S0 is not monotonic [1]. Also, if Sn is mono tonic decreasing, then 
Sn+1 cannot be monotonic increasing. Therefore, in a long game, all of the Sn at 
the beginning must be monotonic decreasing. 

Let Sn = (wn9 xn9 yn9 zn) « We say that Sn is additive if W 
If Sn_l is monotonic (decreasing), then a trivial calculation shows that Sn is ad-
ditive. Thus, although S = SQ may not be additive, Sl9 S29 ... 9 Sn will be addi-
tive as long as SQ9 Sl9 ..., £n-i are monotonic. 

LEMMA: If S19 S29 ••• > S10 are all monotonic (decreasing), 5X is additive, and 
|5j,| £ tn9 then either |SJ <_ 2tn_2 or |S7| £ 4tn_„ or |S10| 1 8tn„6. 

PROOF: Write 5X = (a + b + c, a9 b9 o) and assume a + b + <? £ £„, 

\SM\ > 2tn_2s \S7\ > 4tn_lf, and |S10| > 8tn_6. 

Since we know that £x ... 51 0 are all monotonic, they can be explicitly calculated, 
and we find that 

\Sh\ = 22?, |57| = ka -42? - 4<?, and |S10| - 16c - 82?. 

jsj > 2tn_2 implies 2b >_2tn_2 + 2 or 32? _> 3tn_2 +'3; |S7| > 4tn_4 implies 
<z-£-c?.> £„„!+ + !; | JŜ X 0 I > 8tn_6 implies 2c-b >_ tn-$ + \* Adding these three 
inequalities, we obtain 

a + b + o _> 3tn_2 + tn_k + tn-6 +•• 5. 

But since a + b + c £ tn, we have 

Using the defining relation of the Tribonacci numbers repeatedly, we get 

2£n_3 > 2tn.3 + 5, 

which is an obvious contradiction. This proves the lemma. 

THEOREM 2: If S1 is additive and |5j £ tn9 then L(5X) £ L(!Tn) = 3[~1 , n •> 2. 

PKCX)F: Since S^ is additive, we may write Sx = (a + 2? + o9 a, 2?, <?), where 
£n-i < # + 2? + o £ tn. We use induction on n. We can check the first 'few1 cases 
(by computer) and see that the theorem is true for n = 2, 3, ..., 9. (That is, 
\S1\ £ 81.) Now, assume the result is true for all Sx such that \S1\ <.tk9 where 
k < n, n >_ 10. 

If Sl9 ..., 510 are all monotonic, then, by the induction hypothesis and the 
lemma, either 

L(SX) = L(SJ + 3 £ 3p-=~^] + 3 = 3[|] 

or LiS^ = L(S7) + 6 £ 3p-=^] + 6 = 3^] 

or L(SO = L(£10) + 9 < 3 p - ^ ] + 9 - 3[f ] . 

Here we have used the fac t that 2t d i v i d e s every element of S3t+i> t >_ 1. 
Thus, for example, Sh - 2S% and LOS^) - 1 ( 5 $ ) . If | 5 k | £ 2 t n . 2 > then | 5 $ | £ t n _ 2 , 
a n d S O fn - 21 

Lost) i LCr„_2> - 3 r ^ J 9 
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by the induction hypothesis, taking S* as our 'new1:S> . Thus, in any case, 

LiS,) < 3[§], 
If S19 ...9 S10 are not all monotonic, let Sj be the first which is nonmono-

tonic. Then 

L(S±) = L(S3-) + (j - 1) < 6 + j - 1 = j + 5 < 1.5, 

since L(Sj) _< 6 whenever Sj is not monotonic. But since n _> 10, 

LCTn) = 3[fl 2: 15, 
so LOSx) 5 £(£„). L Z J 

This completes the proof of Theorem 2. 

Theorem 1 is now an easy corollary, since: if S0 is monotonic decreasing and 
\SQ\ <L \Tn\* then \SX\ <_ \.Tn\ and S1 is additive. If S0 is not monotonic decreas-
ing, then L(S0) £ 6. 

There actually are examples where L(S) = L(Tn) + 1: 

L(T&) = L(13, 7, 4, 2) = 9 and L(13, 6, 2,0) = 10. 
iy, 

L(a + b + e, H c, c, 0) = £(a + & 4- <?, a, 2?, a) + 1; 

L(tn9 tn_2 + *n_3, tn_3, 0) = L(Tn) + 1 - 3[|] + 1 . 

If we begin with a fc-tuple of nonnegative integers, then it is known that 
Sn = CO, 0, ..., 0) for sufficiently large n9 provided k = 2t. (If k ^ 2t, the 
sequence {£n} may cycle [3], [4], [9].) Thus, a natural question to ask is: "What 
is the maximum length of the eight number game, or, more generally, the 2*-number 
game?" 

It was already mentioned that if S± is additive and leads to a long four-num-
ber game, then the ratios of the elements of 'S1 should be close to the number r ~ 
1.839... . How accurately can the length of the game be predicted if one knows 
these ratios? 
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