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Craig M. Cordes [2] and Charles Small [4] proved Theorem 1, a result that
W. Sierpinski [3] proved, using elementary group theoretic considerations, for
n being a prime, and J. H. E. Cohn [l, Theorem 7] proved for n = m. Moreover,
Theorem 1 is implicit in some of the solutions to Problem E2446 in the Ameri-
can Mathematics Monthly (January 1975).

Throughout this paper, m and n will denote positive integers with m > 1.

Theorem 1: Let n be greater than 1. The congruence x” = @ (mod m) has a solu-
tion for every integer a if and only if (n, ¢(m)) = 1 and m is a product of
distinct primes.

Let a;, a, ...5 ay be a complete residue system modulo m. It follows from
Theorem 1 that af, a}, ..., aj, where n > 1, is a complete residue system mod-
ulo m if and only if (n, ¢(m)) = 1 and m is a product of distinct primes.

We shall give a simple proof of Theorem 1 and, in addition, prove the fol-
lowing two related results.

Theorem 2: The following three conditions are equivalent:

I. The congruence " = a (mod m) has a solution for every integer a with

ety = 0

II. The congruence x” = g (modm ) has a solution for every integer g rela-
tively prime to m.

11I. (%, ¢(m)) = 1.

From Theorem 2, it follows that for a;, a;, ..., agm @ reduced residue
system modulo m, af, al, ..., afm 1is a reduced residue system modulo m if
and only if (n, ¢(m)) = 1.

The following result tightens the equivalence of Theorem 2.

Theorem 3: Conditions I and II are equivalent.

I. The congruence x” = g (mod m) has a solution if and only if
m
— ) = 1.
(a, (a» m))
I1I. (n, ¢(m)) =1 and p"** Jm for all primes p.

By Theorem 3, we can, with only the simplest of calculations, write down
the nth-power residues modulo m if (n, ¢(m))=1 and p”+1*7n for all primes p.
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We shall now state and prove several results needed for the proofs of

these three theorems.

Lemma 4: Let a and n be positive integers. If ( s ?EEE%T) = 1, then there is
a positive integer ¢ such that ’

ant

i

amem) (nod m).

Proof: Assume (a, TEELEY) = 1 and, for convenience, let d = (a, m). Since
s

(- 5)=1 ana  o(%)lsem.

by the Euler-Fermat theorem,

q(m

1 (mod %)

There are positive integers ¢ and ¢t such that nt - (n, ¢(m)) = ¢(m)c. Thus

grt-(mo(m) = jetmye = (mod%).

Hence

ant = g (m em) (mod m).

Corollary 5: If (n, ®(m)) = 1, then the congruence x” = g (mod m) has a solu-

. . . m
tion for every integer a with (a, ?5—7;7) = 1.
s

Corollary 6: If (n, ¢(m)) = 1 and m is a product of distinct primes, then the
congruence " = g (mod m) has a solution for every integer a.

Corollary 6 follows directly from Lemma 4 since m being a product of dis-

. . . . m .
tinct primes implies (a,-(a——ﬁy) = 1 for every integer a.
£

Lemma 7: If the congruence " = a (mod m) has a solution for every integer a
relatively prime to m, then (n, ¢(m)) = 1.

Proof: Assume (n, ¢(m)) # 1. Thus, there is a prime ¢ such that g|n and
Q|¢(p5), where pel|m and p is a prime. We shall show that the assumption p =
2 leads to a contradiction and that the assumption p > 2 also leads to a con-
tradiction.

First, assume p = 2. Thus, ¢ divides ¢(2°) = 2°"! so g =2 and e > 2.
Choose a such that a = 3 (mod 2°) and a = 1 (mod m/2%). Thus (a, m) = 1; so,
by assumption, the congruence x" = a (mod m) has a solution. Since 4|22 and
23|m, we have 4|m. Hence, the congruence x” = g = 3 (mod 4) has a solution.
But " = 3 (mod 4) is impossible, since »n is divisible by g = 2.

Now assume p > 2. Choose a such that g is a primitive root modulo p¢ and
a =1 (mod m/pe). Thus (a, m) = 1, so there is an integer x such that x™ = a
(mod m). Since pe|m, 2" = . (mod p®). For k = ¢(pe)/q, a* = x"® =1 (mod pe).
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The last congruence is true because ¢(p®) = gk, which divides nk. But gk =
(mod p¢) is impossible, since g is a primitive root modulo pé and

1
—

0<k<o@e).

We shall now prove Theorem 1. First, assume that the congruence x” = g
(mod m) has a solution for every integer @q. Thus 0 , 1 , 2 , ..., (m - 1)
must be incongruent modulo m. Now if there is a prime p such that p?|m then,
since n > 1, we would have the contradiction

0" =0 = (%)" (mod m) .

Therefore, m must be a product of distinct primes. By Lemma 7, we have that
(n, o(m)) = 1.

Conversely, assume (n, ¢(m)) = 1 and m is a product of distinct primes.
By Corollary 6, the congruence " = g (mod m) has a solution for every inte-
ger a.

We shall now prove Theorem 2. Since (a, m) = 1 implies (a, ZEELET) =1,

IT follows from I. The remaining implications—II implies III and III implies
I—follow from Lemma 7 and Corollary 5, respectively.

To prove Theorem 3, we need

Lemma 8: Let a be an integer. If p"+l*rn for all primes p and the congruence

x" = a (mod m) has a solution, then (a, ?EELET) = 1.
L]

Proof: Assume the congruence x” = a (mod m) has a solution and there is a
prime p such that p|a and p’TE?LET' Choose e such that p¢||m; clearly e < n.
Since p|a and p|m, p|x"; so pe|x”. From p¢|m and p¢|x”, we have that p¢|a, so
p¢|(a, m). But since p‘zaglajy too, we have the contradiction p®**|m.

Finally, we prove Theorem 3. First, assume condition I. Thus, in parti-
cular, the congruence x" = g (mod m) has a solution for every integer g rela-

tively prime to m. Hence, by Lemma 7, (n, ¢(m)) = 1. To prove that p"*'[m
for all primes p, assume there is a prime p such that p"*t|m. Thus

<p", —m—> = <p", 1)2? > 1.
", m) p”

Therefore, by condition I, the congruence z" = p” (mod m) has no solution.
But clearly x = p is a solution to the congruence x" = p” (mod m).

The fact that condition II implies condition I follows from Lemma 8 and
Corollary 5.
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Abstract
The numbers

AGm, k, 8, v) = [V EX(sz + 7)1 >
where V =1 - E71, Ejf(x) = f(x + J)s Ug=u, when 0 < & < k and Uy = 0 other-
wise, (Y)m =y(y - 1) ... (y - m+ 1), are the subject of this paper. Recur-
rence relations, generating functions, and certain other properties of these
numbers are obtained. They have many similarities with the Eulerian numbers
1 1
Amx = ﬁT{Vm+ A P

and give in particular (i) the number Cp,n,s of compositions of n with exactly
m parts, no one of which is greater than s, (ii) the number @s,, (k) of sets
{215 235 +ees Zm} with 24 € {1, 2, ..., 8} (repetitions allowed) and showing
exactly k increases between adjacent elements, and (iii) the number g, ,(r, k)
of those sets which have ¢, = r. Also, they are related to the numbers

G(m, n, 8, r) = if[A”(sx + 1)p] A=E -1,

x=0"°

used by Gould and Hopper [1l] as coefficients in a generalization of the Her-
mite polynomials, and to the Euler numbers and the tangent-coefficients T,.
Moreover, lim s™"m!A(m, k, s, su) = An, , u» Where

8+t

1
Am ke, u = ET{VM+IEk(Q_i_z)m]x=o
is the Dwyer [8, 9] cumulative numbers; in particular,

lim s™"m!A(m, k, 8) = Ap, x> A(m, kK, 8) = A(m, k, s, 0).

8+t

Finally, some applications in statistics are briefly discussed.



