MINIMUM PERIODS MODULO n FOR BERNOULLI POLYNOMIALS

WILFRIED HERGET
Technische Universität, Clausthal, Fed. Rep. Germany (Submitted September 1980)

1. It is known that the sequence of the Bernoulli numbers b_{m}, defined by

$$
\begin{aligned}
& b_{0}=1, \\
& b_{m}=-\frac{1}{m+1} \sum_{i=0}^{m-1}\binom{m+1}{i} b_{i} \quad(m>0),
\end{aligned}
$$

is periodic after being reduced modulo n (where n is any positive integer), cf. [3]. [In this note, we use the symbols b_{m} for the Bernoulli numbers and $B_{m}(x)$ for the Bernoulli polynomials.] In [3] we proved

Theorem 1: Let $p \in \mathbb{P}, \mathbb{P}$ being the set of primes, $p \geq 3$, and $e, k, m \in \mathbb{N}$. For $\overline{k, m \geq e+1, \text { we have: }}$
$b_{k} n$-integral and $k \equiv m \bmod p^{e}(p-1) \Rightarrow b_{m} n$-integral and $b_{k} \equiv b_{m} \bmod p^{e}$.
In this note, we shall give some analogous results about the sequence of the Bernoulli polynomials $B_{m}(x)$ reduced modulo n (Theorem 6) and the polynomial functions over \mathbb{Z}_{n} generated by the Bernoulli polynomials (Theorem 4). Here, Z_{n} is the ring of integers modulo n, where $n \varepsilon \mathbb{N}, n \geq 2$, and the Bernoulli polynomials in $\mathbb{Q}[x]$ are defined by

$$
B_{m}(x)=\sum_{i=0}^{m}\binom{m}{i} b_{i} x^{m-i}, m \varepsilon\{0,1,2, \ldots\} .
$$

Similar questions about Euler numbers and polynomials were asked by Professor L. Carlitz and Jack Levine in [2].
2. In [4] we discussed in which cases it is possible to define (in a natural way) analogs of Bernoulli polynomials in \mathbb{Z}_{n}. In this section, we shall prove the periodicity of the sequence of the polynomial functions B_{m} over \mathbb{Z}_{n} generated by the Bernoulli polynomials. Each polynomial $F(x) \varepsilon \mathbb{Q}[x]$ generates a polynomial function $F: \mathbb{Z} \rightarrow \mathbb{Q}$ by

$$
\begin{equation*}
x \leftrightarrow F^{\prime}(x) . \tag{1}
\end{equation*}
$$

Now, considering (1) in \mathbb{Z}_{n}, we get a function $F: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ if and only if
(a) all values of F are interpretable mod n, and
(b) the relation (1) preserves congruence properties.

For this, it is useful to introduce the following notations ([4], p. 28).
Definition 1: A function $F: \mathbb{Z} \rightarrow \mathbb{Q}$ is said to be acceptable mod n, iff
(a) $\forall x, F(x)$ is n-integral,
(b) $\quad x \equiv y \bmod n \Rightarrow F(x) \equiv F(y) \bmod n$.

A polynomial $F(x) \in \mathbb{Q}[x]$ is said to be acceptable $\bmod n$ if this is true for its polynomial function.

Definition 2: Two functions $F, G: \mathbb{Z} \rightarrow \mathbb{Q}$ are said to be equivalent mod n iff
(a) F, G are acceptable mod n,
(b) $\forall x, F(x) \equiv G(x) \bmod n$.

Two polynomials $F(x), G(x) \varepsilon \mathbb{Q}[x]$ are said te be equivalent mod n if this is true for their polynomial functions. We write

$$
F \sim G \bmod n \quad \text { and } \quad F(x) \sim G(x) \bmod n,
$$

respectively.
From [4], p. 29, we have the following
Theorem 2: $B_{m}(x)$ is acceptable mod n

$$
\Leftrightarrow b_{m} \text { is } n \text {-integral and } m S_{m-1}(n) \equiv 0 \bmod n
$$

where

$$
S_{m}(x)= \begin{cases}\sum_{k=0}^{x-1} k^{m} & \text { for } m \varepsilon\{0,1,2, \ldots\}, x \in \mathbb{N} \\ 0 & \text { for } m=-1 \text { or } x=0\end{cases}
$$

A more explicit characterization of $B_{m}(x)$ acceptable mod n gives (cf. [4], p. 31)

Theorem 3:

(a) For $m>1$ and $2 \nmid n$ we have: $B_{m}(x)$ acceptable mod n
$\Leftrightarrow \forall p \in \mathbb{P}:(p \mid n \Rightarrow p-1 \nmid m$ and $(p-1 \nmid m-1$ or $p \mid m))$.
(b) For $k \in \mathbb{N}$ we have: $B_{m}(x)$ acceptable $\bmod 2 k \Leftrightarrow m=0$.

Now, we may state our first new assertion. (By Theorem 3, it suffices to discuss the case $n=p^{e}, p$ a prime, $p \geq 3$.)

Theorem 4: Let $p \in \mathbb{P}, p \geq 3$, and $e, k, m \in \mathbb{N}$.
(a) For $k, m \geq e+1$, we have:

$$
\begin{aligned}
& B_{k} \text { acceptable } \bmod p \text { and } k \equiv m \bmod p^{e}(p-1) \\
\Rightarrow & B_{m} \text { acceptable } \bmod p \text { and } B_{k} \sim B_{m} \bmod p^{e} .
\end{aligned}
$$

(b) $p^{e}(p-1)$ is the smallest period length of the sequence of the Bernoulli polynomials in the sense of (a).

For the proof of this theorem, we need the following
Lemma: Let $p \in \mathbb{P}, p \geq 3, e \in \mathbb{N}$. Then

$$
x^{\lambda\left(p^{e}\right)+V\left(p^{e}\right)} \equiv x^{V\left(p^{e}\right)} \bmod p^{e} \text { for all } x,
$$

where both $V\left(p^{e}\right)=e$ and $\lambda\left(p^{e}\right)=p^{e-1}(p-1)$ are minimal for this property.
For the proof of this lemma, see [5], Theorem 1.

Proof of Theorem 4(a): Let $k, m>e, k \equiv m \bmod p^{e}(p-1)$ and B_{k} be acceptable mod p, so that b_{k} is p-integral and $k S_{k-1}(p) \equiv 0 \bmod p$. By Theorem 1 , b_{m} is p-integral with $b_{k} \equiv b_{m} \bmod p^{e}$. Furthermore, from $k \equiv m \bmod p^{e}(p-1)$, and $k, m>e$, we have $k \cdot i^{k-1} \equiv m \cdot i^{m-1} \bmod p^{e}$ for all i, by the lemma above. Then

$$
k S_{k-1}(x)=k \sum_{i=0}^{x-1} i^{k-1} \equiv m \sum_{i=0}^{x-1} i^{m-1}=m S_{m-1}(x) \bmod p^{e}
$$

for all x. Now we use (5) from [4]:

$$
B_{m}(x)=m S_{m-1}(x)+b_{m} .
$$

Thus B_{m} is p-integral, too, and $B_{k}(x) \equiv B_{m}(x) \bmod p^{e}$ for all x; i.e.,

$$
B_{k} \sim B_{m} \bmod p^{e}
$$

Proof of Theorem 4(b): Let B_{k} and B_{m} be acceptable mod p, let $k, m \geq e+1$, and let $B_{k} \sim B_{m} \bmod p^{e}$. Then $B_{k}(x) \equiv B_{m}(x) \bmod p^{e}$ for all x. We shall show that $k \equiv m \bmod p^{e}(p-1)$ if $p^{e} \nmid m$. Obviously this would prove the assertion. First, we get $b_{k}=B_{k}(0) \equiv B_{m}(0)=b_{m} \bmod p^{e}$, hence $k S_{k-1}(x) \equiv m S_{m-1}(x) \bmod p^{e}$ for all x; and moreover,

$$
\begin{equation*}
k x^{k-1} \equiv m x^{m-1} \bmod p^{e} \text { for all } x \text {, } \tag{2}
\end{equation*}
$$

since

$$
k x^{k-1}=k S_{k-1}(x+1)-k S_{k-1}(x)
$$

Putting $x=1$ in (2) shows $k \equiv m \bmod p^{e}$. Let $d=$ g.c.d. $\left(k, p^{e}\right)$. We know that g.c.d. $\left(m, p^{e}\right)=d$, and $d=p^{i}$ with $0 \leq i<e$, since $p^{e} \nmid k$. Thus (2) implies

$$
x^{k-1} \equiv x^{m-1} \bmod p^{e-i} \text { for all } x
$$

But this is possible only if $k-1 \equiv m-1 \bmod (p-1)$; i.e., $k \equiv m \bmod (p-1)$. Together with $k \equiv m \bmod p^{e}$, we have $k \equiv m \bmod p^{e}(p-1)$, and the theorem is proved.

Remark 1: The minimum period length of the Bernoulli polynomial functions mod n is the same as that of the Bernoulli numbers mod n.

Remark 2: By a very similar argument one may prove that when B_{m} is acceptable $\bmod p, m \equiv 0 \bmod p^{e} \Leftrightarrow B_{m} \sim 0 \bmod p^{e}$. For this, notice that $m \equiv 0 \bmod p^{e}$ implies $b_{m} \equiv 0 \bmod p^{e}([1], p .78$, Theorem 5).

Remark 3: Let $v\left(p^{e}\right)$ denote the preperiod length of $B_{m} \bmod p{ }^{e}$. Then Theorem 4 implies $v\left(p^{e}\right) \leq e+1$. Using Remark 2 one may slightly improve this inequality for special cases with $e \geq p$. For instance, $v\left(3^{3}\right)=3$.
3. In this section we shall discuss the periodicity of Bernoulli polynomials reduced modulo n.

Definition 3: A polynomial $F(x)=a_{0}+a_{1} x+\cdots+a_{r} x^{r} \varepsilon \mathbb{Q}[x]$ is said to be n-integral if and only if the coefficients $a_{0}, a_{1}, \ldots, a_{r}$ are all n-integral.

From [4], p. 32, we have, for the Bernoulli polynomials,
Theorem 5: Let $p \in \mathbb{P}, e \in \mathbb{N}$, and $m \in \mathbb{N} \cup\{0\}$ with p-adic representation

$$
m=\sum_{k=0}^{s} m_{k} p^{k}
$$

Then

$$
B_{m}(x) \in \mathbb{Q}[x] \text { is } p^{e} \text {-integral if and only if } \sum_{k=0}^{s} m_{k}<p-1
$$

Remark 4: Each n-integral polynomial is acceptable mod n, but there are polynomials acceptable mod n that are not n-integral (cf. [4], pp. 32-33). If we reduce the coefficients of any n-integral $B_{m}(x)$, we still get a polynomial of degree m, since the coefficient of x^{m} is 1 . Consequently, no periodicity appears. But by the iemma above we have

$$
x^{p^{e-1}(p-1)+e} \equiv x^{e} \bmod p^{e} \text { for all } x
$$

Hence, any p-integral polynomial $F(x)$ is equivalent to a reduced polynomial with degree $<p^{e-1}(p-1)+e$ having coefficients in $\left\{0,1, \ldots, p^{e}-1\right\}$. We shall denote such a polynomial $F(x)$, reduced mod n, by $\mathcal{F}(x)$.

Remark 5: If $\tilde{F}_{1}(x)$ and $\tilde{F}_{2}(x)$ are reduced polynomials of $F(x) \bmod n$, then

$$
\tilde{F}_{1}(x) \sim \tilde{F}_{2}(x) \sim F(x) \bmod n .
$$

We conjecture that the sequence of the Bernoulli polynomials, reduced mod n, is periodic in a strong sense too, with a proof here only for $n=p, p \in \mathbb{P}$.

Theorem 6: Let $p \in \mathbb{P}, k, m \geq 2$, and suppose $B_{k}(x), B_{m}(x)$ are p-integral. If $k \equiv m \bmod p(p-1)$, then

$$
\tilde{B}_{k}(x)=\tilde{B}_{m}(x) \text { in } \mathbb{Z}_{p}[x]
$$

Proof: $B_{k}(x), B_{m}(x) p$-integral implies $B_{k}(x), B_{m}(x)$ acceptable mod p (Remark 4). By Theorem 4 we get

$$
\begin{aligned}
& B_{k}(x) \sim B_{m}(x) \bmod p, \text { hence } \\
& \tilde{B}_{k}(x) \sim \widetilde{B}_{m}(x) \bmod p \text {, i.e., } \\
& \tilde{B}_{k}(x)-\tilde{B}_{m}(x) \equiv 0 \bmod p \text { for all } x .
\end{aligned}
$$

The degree of this difference polynomial is $<\lambda(p)+V(p)=p-1+1=p$, but it has p zeros in \mathbb{Z}_{p}, hence it must be the zero polynomial, and we have

$$
\tilde{B}_{k}(x)=\tilde{B}_{m}(x) \text { in } \mathbb{Z}_{p}[x] .
$$

Remark 6: The question, whether Theorem 6 holds for arbitrary modulus n, remains open. The proof above fails in \mathbb{Z}_{n} when $n \nsubseteq \mathbb{P}$, since $\tilde{B}_{k}(x) \sim \widetilde{B}_{m}(x)$ mod n does not imply $\widetilde{B}_{k}(x)=\widetilde{B}_{m}(x)$ in $\mathbb{Z}_{n}[x]$. For example, let $e>1$ and

$$
\begin{aligned}
& F(x)=p^{e-1} \prod_{i=0}^{p-1}(x-i), \\
& G(x)=\prod_{i=0}^{p^{e}-1}(x-i)
\end{aligned}
$$

Then $F(x) \sim G(x)(\sim 0) \bmod p^{e}$, but $F(x) \neq G(x)$ in $\mathbb{Z}_{p e}[x]$. Or, if $n=p_{1} p_{2}$, where $p_{1}, p_{2} \in \mathbb{P}$ and $p_{1} \neq p_{2}$, then one may consider the polynomials

$$
p_{2} \prod_{i=0}^{p_{1}-1}(x-i) \quad \text { and } \quad p_{1} \prod_{i=0}^{p_{2}-1}(x-i)
$$

for a counterexample.

Remark 7: The assumption in Theorem 6 that both $B_{k}(x)$ and $B_{m}(x)$ are p-integral cannot be weakened, since $B_{k}(x) p$-integral and $k \equiv m \bmod p(p-1)$ does not imply $B_{m} p$-integral. For example

$$
B_{2}(x)=x^{2}-x+\frac{1}{6}
$$

is 5-integral, while $B_{22}(x)$ is not so by Theorem 2, even though $22 \equiv 2 \bmod$ 5. 4 .

References

1. L. Carlitz. "Bernoulli Numbers." The Fibonacci Quarterly 6, no. 3 (1968): 71-85.
2. L. Carlitz \& J. Levine. 'Some Problems Concerning Kummer's Congruences for the Euler Numbers and Polynomials." Trans. Amer. Math. Soc. 96 (1960):2337.
3. W. Herget. "Minimum Periods Modulo n for Bernoulli Numbers." The Fibonacci Quarterly 16, no. 6 (1978):544-548.
4. W. Herget. "Bernoulli-Polynome in den Restklassenringen \mathbb{Z}_{n}." Glasnik Matematički 14, no 34 (1979):27-33.
5. D. Singmaster. "A Maximal Generalization of Fermat's Theorem." Mathematics Magazine 39 (1966):103-107.
