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1. Introduction 

Articles of a geometrical nature relating to recurrence sequences have 
appeared in recent years in this journal (e.g. [1], [2], [6]). 

The purpose of the present paper is to consider the loci in the Euclidean 
plane satisfied by points whose Cartesian coordinates are pairs of successive 
numbers in recurrence sequences of a certain type. Readers might plot some 
points on the resulting noncontinuous curves (conies). 

Extension to higher-dimensional space is briefly discussed. 

2. The General Conic 

Begin by defining [4] the general term of the sequence {wn(a> b; p, q)} as 

(1) wn+2 = pwn+1 - qwn, wQ = a, w1 = b, 

where a, b, p, and q belong to some number system, but are usually thought of 
as integers. Write [4] 

(2) e =p a b - qa2 - b2. 

Now [4] 

(3) WnWn+2 - Wn + 1 = ^ * > 

which is a generalization of Simson?s formula 

(4) p p - F2 (-nn+1 

occurring in the Fibonacci sequence {Fn} = {wn(0, 1; 1, -1)}. 
Equation (3) generalizes the famous geometrical paradox associated with 

(4). For the details, see [5]. 
From (1) and (3), we obtain 

(5) qw1 + w2 - pw w + eqn = 0. 

Next, put Wn = x9 Wn+1 = y. Then, by (5), 

(6) qx2 + y2 - pxy + eqn = 0. 

This equation represents a conic in rectangular Cartesian coordinates 
Or, y). Anticlockwise rotation of axes through an angle 
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eliminates the xy term and produces the canonical form of the conic (an el-
lipse if p2 < kq9 a hyperbola if p2 > kq> where the degenerate cases are ex-
cluded) . Equation (6) is also obtainable by laborious reduction of the general 
equation of a conic using the uniqueness of a conic through 5 given points. 

3. Some Par t i cu la r Cases 

!• <7 < 0 (Hyperbolas) 

(a) p = 19 q = -1: Substituting in (6) yields the two systems (n even, 
n odd) of rectangular hyperbolas 

(7) x2 - y2 + xy = e1(-l)n (e1 = a2 - b2 + ab), 

asymptotes of which are the perpendicular lines 

(8) y = ax, y = —ar, 

in which a = , the positive root of t2 - t - 1 = 0. For the Fibonacci 

sequence (a = 0, b = 1) and the Lucas sequence (a = 2, 2? = 1), it follows that 
ex = -1 and 5, respectively. These Fibonacci-type curves (7) approach their 
asymptotes remarkably quickly. 

With a fixed eY in (7), a hyperbola for which n is odd (even) may be trans-
formed into the corresponding hyperbola for which n is even (odd), by a re-
flection in y = x followed by a reflection in the z/-axis (x-axis). 

(b) p = 2, q = -1: For the Pell sequence (a = 0, b = 1), (6) gives 

(9) x»2 - y2 + 2*2/ = (-l)n + 1, 

rectangular hyperbolas with perpendicular asymptotes y = kx, y = -j-x, where 
fc = 1 + /2" is the positive root of t2 - 2t - 1 = 0. 

Gradients of the perpendicular asymptotes of the hyperbolas (6) for which 
p > 0, q = -1 are given by the roots of t2 - pt -•1 = 0. 

II. 4 > 0 

Equation (6) now represents ellipses if kq > p2 and hyperbolas if hq < p . 
For example, the loci for the Fermat sequences 

{wn(0, 1; 3, 2)} and |u„(|,.2; 3, 2 U 

are hyperbolas (one point for each n) 

(10) 2x2 + y2 - 3xy = 2n 

and 
(11) 2x2 + y2 - 3xy = - 2 n _ 1 . 

Further, for the Chebyshev sequences 

{wn(l, 2X; 2A5 1)} and {wn(2, 2X; 2\, 1)}, 
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where A = cos 9, we obtain the ellipses 

(12) x2 + y2 - 2\xy = 1 
and 
(13) x2 + y2 - 2\xy = 4 - 4A2. 

III. Degenerate Case 

When X = 1 in (12), i.e., for the sequence {w (1, 2; 2, 1)}, of integers, 
we have the degenerate curve x2 + y2 - 2xy = 1, i.e., the line 

x - y = -1. 

No values of x + y, as defined, satisfy the equation x - y = 1. Successive 
pairs of odd integers and of even integers, generated by 

{wn(ls 3; 2, 1)} and {wn(2, 4; 2, 1)}, 

respectively, satisfy the line 

(15) x - y = -2. 

4. Extension to Higher Space 

Equations of the third, fourth, and higher degrees that are based on sec-
ond-order recurrences like (1) (see, e.g. [3], [4]) cannot yield any nondegen-
erate loci in spaces of dimension greater than two. 

For three-dimensional (nonprojective) space, it is necessary to consider 
third-order recurrence relations, of which the simplest is 

(16) Pn + 3 = Pn-+2 + Pn+1 +P„ in > 0). 

Waddill and Sacks [8] have established the following relation for {Pn} cor-
responding to the Simson formula (4) for {Fn}: 

p2 p + p3 + p2 p _ p p P • - 2P ' P P 
n + 3 n n + 2 n + 1 n+h n+h n+2 n n+3 n+2 n+1 

(17) 
= Pi + 2P* +P\ + 2P\P1 + 2PQPl + P2

QP2 - 2P1P\ - 2P0PXP2 - PQP2
2. 

Putting P0 = 0, ?! = P2 = 1 and P0 = 1, Px = 0, P2 = 1 they obtained their 
sequences {Kn} and {Qn}$ respectively: 

(18) {Kn}i 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ...; 

(19) {Qn}: 1, 0, 1, 2, 3, 6, 11, 20, 37, 68, 125, 230, ... . 

Letting Pn=x, Pn+1
=sy> ^n + 2 =

 z i n (17)» w e derive, after some algebraic 
manipulation, 

(20) x3 + 2y3 + s3 + 2x2# + 2xy2 - 2yz2 + x2z - xz2 - 2xz/s = A, 

where A = 1 for {#„} and .4 = 2 for {$n}. Equations (20) represent cubic sur-
faces in Euclidean space of three dimensions. 
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More general forms of (16) would lead to extremely cumbersome equations. 
Observe that if we label any three successive numbers in (18) as x, y9 z, 

and the corresponding three numbers in (19) as X, Y9 Z, then we perceive that 
X = y - x9 Y - z - y9 Z = x + y. 

Fourth- and higher-order recurrences should produce equations correspond-
ing to (17) which are generalizations of Simsonfs formula (4). While (17) is 
not a pretty sight, the mind boggles at the prospect of further extensions, 
which we accordingly do not investigate. But the general pattern seems clear: 
a recurrence of the nth order ought to lead to a hypersurface (of dimension 
n - 1) in Euclidean n-space. 

5. Concluding Comments 

a. For the sequence {wn(l9 a; 1, -1)}, e = 0 [see (1), (2), (7)] and the 
curve (7) degenerates to the line-pair x2 + xy - y2 = 0. 

b. Graphing the Fibonacci numbers Fn against n reveals that they asymp-
totically approach the exponential values 

C. M. H. Eggar, in "Applications of Fibonacci Numbers" [The Mathematical 
Gazette 63 (1979):36-39], refers to (7), in the case where e1 = 1, though his 
context is nongeometrical. 

d. Interest in the theme of this article was stimulated by a private com-
munication to the author in 1980 by L. G. Wilson, who determined the vertex of 
the hyperbola (7) for the Fibonacci sequence, but only in the case where n is 
odd, namely, x = 0..92.0442065...., y = 0.217286896... . He also calculated the 
angle of inclination of the axis of this hyperbola to the x-axis, namely, 

13.28252259... degrees [ (= 13° 17f) = tan^/B" - 2)]. 

Furthermore, Wilson briefly investigated the geometry of the third-order 
sequence {Tn}i 

(21) 0, 2, 3, 6, 10, 20, 35, 66, ..., 

defined in Neumann-Wilson [7] by 

(22) Tn+3 = Tn + 2 + Tn + i +Tn + (-l)n (n >_ 0). 
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Abstract 

In a binary tree with n terminal nodes weighted by probabilities pl9 .. ., 
Pn9 ^Pi = 1 > it: ^s assumed that each left branch has cost 1 and each right 
branch has cost 2. The cost a^ of terminal node pi is defined to be the sum 
of costs of branches that form the path from the root to this node. The sum 
£Ptai *-s c^lled the average cost of the tree. As a top-down tree-building 
rule we consider ^-weight-balancing which constructs a binary tree by succes-
sive dichotomies of the ordered set pi, ..., pn according to a certain weight 
ratio closely approximating the golden ratio. Let H = H(pl9 ..., pn) = -Zp^ 
log pi be the Shannon entropy of these probabilities. The ijj-weight-balancing 
rule is motivated by the fact that the entropy per unit of cost 

H(x9 1 - x)/{l • x + 2 • (1 - x)) 

for the division x : (1 - x) of the unit interval is maximized when 

x = i|> = (/5 - l)/2, 

the golden cut point. It is then shown that the average cost of the tree built 
by ijj-weight-balancing is bounded above by #/(-log ip) + 1, if the terminal nodes 
have probabilities p1, ..., pn , px _> ••• > pn, from left to right in this or-
der in the tree. If Pj + 1/Pj ^ (l/2)ip for each j, the above bound can be im-
proved to El {-log \p) + ijj. For the case px = ••• = pn, we obtain the following 
results. The ̂ -weight-balancing constructs an optimal tree in the sense of 
minimum average cost and constructs the Fibonacci tree of order k when n = Fk9 
the kth Fibonacci number. The average cost of the optimal tree is given ex-
actly. Furthermore, for an arbitrarily given number of terminal nodes, the 
ip-weight-balanced tree is also "balanced" in the sense of Adelson-Velskii and 
Landis, and is the highest of all balanced trees. 

We will discuss some properties of Fibonacci (Fibonaccian) trees in view 
of their construction by an entropic weight-balancing, beginning with the fol-
lowing preparatory section: 

*This paper was presented at the International Colloquium on Information 
Theory, Budapest, Hungary, August 24-28, 1981. 


