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Abstract 

In a binary tree with n terminal nodes weighted by probabilities pl9 .. ., 
Pn9 ^Pi = 1 > it: ^s assumed that each left branch has cost 1 and each right 
branch has cost 2. The cost a^ of terminal node pi is defined to be the sum 
of costs of branches that form the path from the root to this node. The sum 
£Ptai *-s c^lled the average cost of the tree. As a top-down tree-building 
rule we consider ^-weight-balancing which constructs a binary tree by succes-
sive dichotomies of the ordered set pi, ..., pn according to a certain weight 
ratio closely approximating the golden ratio. Let H = H(pl9 ..., pn) = -Zp^ 
log pi be the Shannon entropy of these probabilities. The ijj-weight-balancing 
rule is motivated by the fact that the entropy per unit of cost 

H(x9 1 - x)/{l • x + 2 • (1 - x)) 

for the division x : (1 - x) of the unit interval is maximized when 

x = i|> = (/5 - l)/2, 

the golden cut point. It is then shown that the average cost of the tree built 
by ijj-weight-balancing is bounded above by #/(-log ip) + 1, if the terminal nodes 
have probabilities p1, ..., pn , px _> ••• > pn, from left to right in this or-
der in the tree. If Pj + 1/Pj ^ (l/2)ip for each j, the above bound can be im-
proved to El {-log \p) + ijj. For the case px = ••• = pn, we obtain the following 
results. The ̂ -weight-balancing constructs an optimal tree in the sense of 
minimum average cost and constructs the Fibonacci tree of order k when n = Fk9 
the kth Fibonacci number. The average cost of the optimal tree is given ex-
actly. Furthermore, for an arbitrarily given number of terminal nodes, the 
ip-weight-balanced tree is also "balanced" in the sense of Adelson-Velskii and 
Landis, and is the highest of all balanced trees. 

We will discuss some properties of Fibonacci (Fibonaccian) trees in view 
of their construction by an entropic weight-balancing, beginning with the fol-
lowing preparatory section: 

*This paper was presented at the International Colloquium on Information 
Theory, Budapest, Hungary, August 24-28, 1981. 
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1. Binary Tree with Branch Cost 

Let us consider a binary tree (rooted and ordered) with n - 1 internal 
nodes (branch nodes) and n terminal nodes (leaves) [6]. An internal node has 
two sons, while a terminal node has no sons. A node is at level £ if the path 
from the root to this node has £ branches. The terminal nodes are assumed to 
be associated, from left to right, with probabilities or weights p2, ..., pn, 
Y,pi = 1. We assume, furthermore, that every left branch has unit cost 1, and 
every right branch has cost o (>. 1). A node is then associated with two num-
bers, probability and cost; the probability of an internal node is defined to 
be the sum of probabilities of its descendant terminal nodes, and the cost of 
a node is defined to be the sum of costs of branches that form the path from 
the root to this node. The root, then, has probability 1 and cost 0. Some-
times, for simplicity, a node will be named by the associated probability. We 
define the average cost of a tree as 

n 

c = E ViZi* 
i = l 

where a± is the cost of the terminal node pi . Since we interpret C as the 
average cost required to get to a terminal node by tracing the corresponding 
path from the root, C measures a global goodness of the tree: for fixed n, c9 
px, . . . , pn , the smaller C is, the more economical the tree is. If we view 
the binary tree, for example, as representing a binary code consisting of n 
codewords with code symbols 0 of duration 1 (corresponding to the left branch) 
and 1 of duration e (to the right) for the given source alphabet having letter-
probabilities p19 ..., p , then C is the average time needed to send one source 
letter. 

An internal node will be called internal node J, l<_j<_n - 1, if its left 
subtree has p- as the rightmost terminal node> (The leftmost terminal node of 
its right subtree is then Pj+1>) Let us denote by Lj and Rj the probabilities 
of the left and the right sons of the internal node j, respectively. Put 

Tj = LJ + RJ » 

which is, of course, the probability of the internal node j . 
We give here three general relations—(1), (2), and (3)—for use in later 

sections. First we have 
n-l. 

(1) C = £ (Lj + cRd). 
J=I 

This is seen by observing that the cost 1 [resp. a] of the left [right] branch 
that connects the internal node j and its left [right] son contributes 1 • Lj 
[c ' Rj] to C. 

Second, let 
n 

H E ff(Pl,-..., pn) = -Y.Vi log Vi 
i = l 

be the Shannon entropy. (Logarithms will always be to the base 2.) We have 
"-1 (L, Rj\ 

(2) E = E TjH[^, -£). 
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This is the well-known binary branching property of the entropy [4, 9], The 
entropy is known as a very appropriate function to measure the uncertainty, 
the uniformness, or the randomness, of the probability distribution pl9 ..., 
pn. It is this aspect and the branching property that relates the entropy to 
the economical structures of the trees having weighted terminal nodes, as will 
be seen in the following sections. 

Third, letting bj be the cost of the internal node j , we have 

Lemma 1 : 

o) f x = E&j + <n - DC1 + *>• 

Proof (by induction on n): When n = 1, (3) is trivially true. Consider 
an arbitrary tree with n+ 1 terminal nodes. At the maximum level there exist 
two terminal nodes that are sons of the same internal node, say A:. Merge these 
nodes into k to obtain a tree having n terminal nodes. The decrease in the 
total cost of terminal nodes due to this merging is given by 

(bk + 1) + (bk + o) - bk = bk + (1 + a). 

On the other hand, the decrease in the total cost of internal nodes is bk. 
This completes the proof. 

2. Weight-Balancing and "Discrete" Golden Cut 

A binary tree can be viewed as a pattern of successive choices between the 
left and the right branches started from the root in order to look for a ter-
minal node. The uncertainty per unit of cost, removed by the choice at the 
internal node j, is measured by 

H(EL ?L\ 

' • £ ) • • • & ) • 
So the tree that maximizes this quantity at each step can be expected to have 
a small average cost C. Of course, the successive local optimizations of this 
type will not necessarily lead to a global minimization of the average cost. 
Nevertheless, we will be concerned with this process because it is interesting 
in its own right. 

In the case o = 1, the above quantity reduces to H(Lj /Tj , Bj/Tj) , which 
becomes maximum when \Lj - Rj\ is minimum, i.e., when 

Lj - p. 12 < Tj/2 <LJ:+ Pj + 1/2, 

for fixed Tj . The rule for constructing a tree in a top-down, level-by-level 
manner, such that at each step Lj and Rj are made as equal as possible, is 
called "weight-balancing." The binary code corresponding to the tree thus 
built by weight-balancing under the monotonocity condition pi J> • • •__> pn is 
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known as the Shannon-Fano code ([3], [9], see also [11]). This code is not 
necessarily optimal (in the sense of minimum average cost), but it is almost 
optimal, and satisfies 

C <H + (1 - 2pn) 

(see [4]). Henceforth, we assume p, _> • • • _> p . 
In order to generalize the above weight-balancing rule to the general c9 

we naturally maximize the function 

(4) Hx' ) - X \ , 0<x< 1. 
x + c(l - x) — — 

Let X be the maximizing value of #. By differentiating, X is the unique posi-
tive root of x° - 1 - x. The maximum value of the function is -log X. Con-
sidering X = X(c) as a function of c9 we have X(l) = 1/2, X(e) is strictly 
monotone increasing, and X(c) •> 1 as c ->• °°. Now define X-weight-balancing as 
a rule for constructing a tree satisfying 

(5) Lj - (1 - \)p. < XTd <Lj +Xp.+1 

for each internal node J = 1, . .., n - 1. Recently, K. Mehlhorn has taken up 
a similar rule to study search trees [8]. We shall be confined especially to 
the case c = 2, where the "X-cut" X : (1 - X) of the unit interval becomes the 
golden cut, since we have X(2) = (/5* - l)/2 = 0.618... . We denote this num-
ber by IJJ, its inverse ty ~1 = cj) being commonly called the golden ratio, and 
ty2 = 1 - ty, -log ip = 0.694... . [Conversely, if x = ty maximizes (4), then c 
must be 2.] 

3. Bounds on the Average Cost 

For a reason that will be clear in the next section, trees constructed by 
ty-weight-balancing may be called "Fibonaccian trees.11 In this section we find 
entropic bounds on the average cost of Fibonaccian trees. Since we are treat-
ing c- 2, and -log \\) is the maximum value of H(x, 1 - x) / (2 - x) , the function 

f(x) = (-log i|0(2 - x) - H(x9 1 - x)9 0 < x < 1, 

is nonnegative. 

Theorem 1: • . H , < C < •., H , + (1 - p n ) . [Note that #/(-log ty) is the en-
— -log ip — - -log Ip ^n 

tropy with respect to the log-base (f), i.e., #/(-log ip) = - Ep^ logf p^ . ] 

Proof: The proof technique is that used in [5]. Consider the difference 
(-log ty)C - H. From (1) and (2) in Section 1, we have 

n-l 

i-iognc - H = £ ^-, 
J = l where 

wXi* «(£•*•£)-<£.£)-*/(£) 
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The fact f(x) ^ 0 implies the left-side inequality to be proved. (This lower 
bound is well known, see [2], and is valid for any tree, as we see from the 
proof.) To prove the upper bound, split (5) with X - \p into two cases, for 
each j : 

Case 1: 

(6) Lj - (1 - iJOp/ < Wd <Lj. 

Equation (6) leads us to ip <.Lj/Tj < 1. The function f(x) is clearly convex 
downward, and /(i|0 = 0, f(l) - -log I|J. Hence, 

f i x ) 1 (-log Wf-E-jjJ ± f ^ P < x < l . 
Therefore, 

^ = ̂ j ^ - j < (-log if;)-J 1 - ij, 

But by the left-side inequality of (6), we have Lj - ipTj < (1 - ty)p.. Hence, 
d^ < (-log ip)pj.. 

Case 2: 

(7) Lj < HJTJ <LJ + T\vj + 1 . 

The r i g h t - s i d e i n e q u a l i t y of Eq. ( 7 ) , t he obvious p- ^_Lj9 and t h e assumption 
Pi .> •• •_> Pn imply i)T. <. 1 -̂ + ippj. + 1 _< Z -̂ + ipp. £ Lj + i j ^ . Hence, 

This and t h e l e f t - s i d e i n e q u a l i t y of (7) g ive 

1 - * £ ™f< *• 2V 
Now we have jf(^) = 0 and 

/ ( l - 40 = ( - l og i|))(l + i|>) - fl(ip, 1 - *) 
= ( - l og i |0 ( l + <|0 - ( - l o g ijj)(2 - l|0 
= ( - l o g I|J)(2I|> - 1 ) . 

T h e r e f o r e , by t h e downward convex i ty of f(x), we have 

f ( x ) <_ ( - l og ifOOP - #) i f 1 - ty £ a; £ i|i. 

Hence, 

-̂ = ̂ (57) i (-los *>(<^ - ^ - J > 

But by the right-side inequality of (7), we have tyTj - Lj <.ipp. + 1. Hence, 

dj < (-log 4 0 % + 1 £ (-log ^)pi + 1. 
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In either case, we have 

dd <. (-log i))pj9 j = 1, ..., n - 1, 

since p. _> p. . This finishes the proof. 

For example, take the English alphabet including "space" (n = 27) with 
letter-frequencies given in [7], If we construct a tree by ^-weight-balancing 
for this source, we obtain #/(-log ip) = 5.885, C = 5.958. 

Remarks: The above proof can be modified to prove the same inequalities (with 
ip replaced by A) for the average cost of the tree built by A-weight-balancing 
whenever 1/2 <_ A £ ip, i.e., 1 .£ c •<. 2. 

If we impose an appropriate condition on p1, ..., p , we may somewhat im-
prove the upper bound on C. 

P.7+1 1 

Theorem 2: If — — >_ y^, j = 1, ..., n - 1, then 

C < , H , + I(J(1 - p ) . log ip YV *«' 

Proof: It is sufficient to show that for Case 1 in the proof of Theorem 1 
we have dj £ (-log ty)tyPj , because we have shown dj <_ (-log ty)tyPj + 1 for Case 2. 
From (6) and the assumption, we see that 

J «/ tj r<7 + 1 T 

The downward convexity of /(or) and a direct numerical check show 

fix) < c-iog wnf-E-jjJ ±f * ^ * ± rri' 
from which it follows that 

(Lj \ Lj ~ Wj 
dj = Tof\j7) <• ( - l o § W i - ^ <• ( - l o § *)*Pj-» u s i n § <6>-

This completes the proof. 

4. The Case pn = ••• = p and Fibonacci Trees 
r i rn 

In this section, we shall restrict ourselves to the special but important 
case p, = ••• = pn, i.e., all terminal nodes have equal weight. Let us first 
define the Fibonacci tree of order k according to [7]. 

Let 
(F0, F19 F29 F3, Fh, F5, ...) = (0, 1, 1, 2, 3, 5, . . . ) , 
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be the Fibonacci sequence. The Fibonacci tree of order k has Fk terminal 
nodes, and it is constructed as follows: If k = 1 or 2, the tree is simply the 
"terminal" root only. If k _> 3, the left subtree is the Fibonacci tree of 
order k - 1; and the right subtree is the Fibonacci tree of order k - 2. 

Remark: The Fibonacci tree we assign order k is called in [7] the "Fibonacci 
tree of order k - 1." We choose this indexing for its neatness in our argu-
ment. 

Figure 1 is the Fibonacci tree of order 7. 

FIGURE 1. The Fibonacci tree of order 7 

Lemma 2: The Fibonacci tree of order k9 k >_ 2, has Fk_± 
k - 2 and Fk_2 terminal nodes of cost k - 1. 

terminal nodes of cost 

Proof (Induction on k): Trivially true when k = 2. The Fibonacci tree of 
order 3 obviously has one (= F2) terminal node of cost 1 and one (= F2) termi-
nal node of cost 2. Suppose the lemma is true for each Fibonacci tree of or-
der less than k9 k >_ 4. By the construction of the Fibonacci tree of order k 
it has, in the left subtree, Fv_0 terminal nodes of cost (fc-3) + l=-/c-2 
and F-, k- 3 terminal nodes of cost (k - 2) + 1 = k 
tree, • k - 3 terminal nodes of cost {k - h) + 2 

1, and, in the right sub-
k - 2 and Fk_h terminal nodes 

of cost (k - 3) + 2 = k - 1. Hence, the Fibonacci tree of order k has, in all, 
Fk_ + Fk_3 = Fk_1 terminal nodes of cost k - 2 and F-k_3 + Fk_ 
nal nodes of cost k - 1. This completes the proof. 

Fk_2 termi-

Theorem 3: The average cost of the Fibonacci tree of order k is given by 

Fk-2 
C = -4r^+ (k - 2). 

Proof: By Lemma 2, we have 

C = -^-{(fc - 2)Fk..± + (k - l)Fk_2] = i~{Fk_2 + (k - 2)Fk}. 

Since 
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Fk =j^>'k " (-*>*}• by [6], 

we have Fk —if; ~k when k becomes large. Therefore, for large k9 

C-<(k-2)+^2=k-l-\l). 

The following procedure, due to Varn [12], constructs an optimal tree (in 
the sense of minimum average cost) for general c% Suppose an optimal tree with 
n - 1 terminal modes has already been constructed. Split, in this tree, any 
one terminal node of minimum cost to produce two new terminal nodes. The re-
sulting tree with n terminal nodes will be optimal. The validity of this pro-
cedure is an immediate consequence of Lemma 1: 

The left-hand side is the average cost to be minimized when px = 
minimize the left-hand side is to minimize the sum of costs of n 
nodes; i.e., to minimize 

n-i 

J = I 

Consider the infinite complete binary tree, and use the "greedy" procedure to 
pick the n - 1 cheapest nodes to be internal. It is easy to see that this 
grows a tree optimal at each step, the same tree as grown by Varn's procedure. 

Returning to our case o = 2, we have the following: 

Theorem 4: The Fibonacci tree of order k is optimal for each k _> 2. 

Proof: From Lemma 2, the Fibonacci tree of order k >_ 2 has Fk_1 terminal 
nodes of cost k - 2 and Fk_2 terminal nodes of cost k - 1. Hence, by VarnTs 
procedure, it is sufficient to prove that if we split all terminal nodes of 
cost k - 2, then the resulting tree, which then has Fk_2+ 2Fk_-L = Fk^1 + Fk = 
Fk+1 terminal nodes, is the Fibonacci tree of order k + 1. To prove this by 
induction on k9 suppose the assertion is true for the Fibonacci trees of order 
less than k9 k >_ 3. (When k = 2, the assertion is trivially true.) The left 
subtree of the Fibonacci tree of order k is the Fibonacci tree of order k - 1 
with Fk_2 terminal nodes of cost (k - 3) + 1. Splitting these nodes produces 
the Fibonacci tree of order k by the induction hypothesis. Similarly, the 
right subtree is the Fibonacci tree of order k - 2 with Fk_3 terminal nodes of 
cost (k - 4) + 2. Splitting these nodes produces the Fibonacci tree of order 
k - 1 by the induction hypothesis. Therefore, splitting all terminal nodes of 
cost k - 2 of. the Fibonacci tree of order k produces the Fibonacci tree of 
order k + 1. 

Theorem 5: Express the number of terminal nodes by n = Fk + r for some k >_ 2 
and 0 £ r < Fk_1. The tree built according to ip-weight-balancing is optimal, 
with the average cost given by 

•-p„. To 
1 internal 
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F + 3r 

When r = 0, the tree is the Fibonacci tree of order k. 

Proof: When k = 2 or 3, the theorem is trivially true. Suppose k >. 4. We 
prove by induction on the number of terminal nodes that the tree having Fk + r 
terminal nodes and built by ip-weight-balancing is the same as a tree con-
structed from the Fibonacci tree of order k by splitting r of it's Fk_1 termi-
nal nodes of cost k - 2. Varnfs procedure and Theorem 4, then, prove the op-
timality part of the theorem. When n - 3, we have k - 4 and r = 0. So the 
assertion is true, since the^ ijj-weight-balancing for n - 3 produces the Fibo-
nacci tree of order 4. Suppose the assertion is true for each number of ter-
minal nodes less than n ~ Fk + r9 & _> 4. By Lemma 2 and the construction of 
Fibonacci trees, there are Fk_2 terminal nodes of cost k - 2 in the left sub-
tree of the Fibonacci tree of order k9 and there are Fk_3 terminal nodes of 
cost k - 2 in the right subtree. Hence, we need only show that the ifj-weight-
balancing "divides" Fk + r into Fk_1 + s, 0 <_ s < ̂ . 2 for the left subtree, 
and Fk_2 + t9. 0 <_ t <_ Fk_3 for the right subtree, with s + t - r. If this is 
true, then we can apply the induction hypothesis and incorporate the cost of 
the initial branch to find that the tree built by ip-weight-balancing on the 
left is obtained by splitting s of its terminal nodes of cost (k - 3) + 1 and 
that on the right by splitting t of its terminal nodes of cost (k - 4) + 2. 

Let us show, therefore, for the left, that the integer m given by 

m - (1 - t|0 < ]\)(Fk + r) <_ m + ip, 

corresponding to (5), satisfies m - Fk_1 + s, 0 £ s < Fk_2. Using 

the above inequalities may be written as 

Fk-i + *p ~ ̂  ~ (~Wk 1 m < Fk_x + tyr - ty• - (-ty)k + 1. 

Since (-i|j)k < tjj2 = 1 - ty9 we have 

-1 < _ \p - (-^ <_ ^r - y - {-^)k , 

and, on the other hand, 

tyr - ty - (-\p)k + 1 <_ ^(Fk_1 - 1) - i\) - H>) k + 1 

= ^ . 2 - ( - ^ ) k _ 1 - * - (-^)fe + ^ 

= Ffc_2 - ^ 2 - (-^)fe} < Ffe_2. 

Therefore, Fkmml - 1 < m < Fk_± + Fk_2; thus, m = Fk_1+s for some s such that 
0 <_ s < Fk_2. 

Similarly, we can show, for the right, using Fk_2 - (1 - ty)Fk = -(-ip)* , 
that the integer m given by 
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m - ty < (1 - i\)){Fk + p) < m + (1 - \p) 

satisfies m = Fk_2 + t, 0 £ t <_ Fk_3. 
The average cost, then, using Lemma 2, is given by 

c =
 F \ r

{ ( k ~ 2><F*-i -*> + <*- D(^-2 + r) + kr} 

F + 3r 

= JirL-z + (fc - 2). 

This completes the proof. 

The height of a tree is defined as its maximum level, the length (the num-
ber of branches) of the longest path from the root to a terminal node. A bi-
nary tree is called balanced (the concept due to Adelson-Velskii and Landis 
[1]) if the height of the left subtree of every internal node never differs by 
more than 1 from the height of its right subtree. 

Theorem 6: When p = • • • = pn , the tree built by ip-weight-balancing is balanced. 

Proof: Let the number of terminal nodes be Fk + r9 0 £ r < Fk_1. It is 
easily seen, by induction on k9 that the Fibonacci tree of order k >_ 2 is of 
height k - 2 and hence balanced, and, if k _> 4, has only the leftmost two ter-
minal nodes at the maximum level, with cost k - 2 (for the left node) and k -
1 (for the right node). From the proof of Theorem 5, the ijj-weight-balanced 
tree having Fk +'r terminal nodes is made by splitting r = s + £ (0 ± s < Fk_2) 
terminal nodes of cost k - 2 of the Fibonacci tree of order k with s from the 
left subtree and t from the right subtree. In this splitting process, the 
leftmost terminal node at the maximum level is, however, never split as long 
as 0 £ r < Fk_19 and the tree remains balanced. Since s < Fk_2i t <_ Fk_39 

this assertion is readily seen by induction. 

Theorem 7: For p1 = • • • = pn and an arbitrarily given number of terminal nodes 
(or branch nodes), the tree built by ip-weight-balancing is the highest of all 
balanced trees. 

Proof: It is easily seen by induction on height that the balanced tree of 
height h with a minimum number of terminal nodes is the Fibonacci tree of or-
der h + 2 [8], Now suppose that there exists a balanced tree of height h with 
Fk + v (0 <_ p < Fk_1) terminal nodes, then 

** + 2 <^k+r<Fk+ F ^ = Fk + 19 

hence, h <. k - 2. But from the proof of Theorem 6 we know that the ip-weight-
balanced tree on Fk + r nodes has height k - 2. 

A Hypothetical Class of "Natural Trees" 

It is amusing to draw (suggested by [10]) the Fibonacci trees upside down 
so that they look like real trees or shrubs, with each branch of cost 2 about 
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twice (relatively) as long as its brother branch of cost 1 (i.e., bifurcation 
ratio 1:2; asparagus, as the author observed, seems to grow in this way). 
There may be variations in drawing. Figure 2 is a corresponding sketch of the 
Fibonacci tree of order 7 shown in Figure 1. As we saw in the last section, 
the simple repeating pattern (Fibonacci recursive rule) in the Fibonacci tree 
implies, and is implied by, the entropic balancing of the tree. This, along 
with the properties given in Theorems 5 and 7, might be of morphological in-
terest for a class of mathematical "natural trees." 

FIGURE 2. Sketch of a "natural tree" 
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