NOTES ON SUMS OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS

DAVID L. RUSSELL
Bell Laboratories, Crawfords Corner Road, Holmdel, NJ 07733
(Submitted November 1978)
The infinite sequence $\left\{s_{n}\right\}$ is a sequence of generalized Fibonacci numbers (also called a generalized Fibonacci sequence or simply Fibonacci sequence) if $s=s_{n-1}+s_{n-2}$ for all n. A particular Fibonacci sequence is completely specified by any two consecutive terms. In this paper we let $\left\{f_{n}\right\},\left\{g_{n}\right\},\left\{h_{n}\right\}$, and $\left\{k_{n}\right\}$ represent generalized Fibonacci sequences, and we let $\left\{F_{n}\right\}$ represent the sequence of Fibonacci numbers defined by $F_{n}=F_{n-1}+F_{n-2}, F_{0}=0, F_{1}=1$.

Theorem: If $\left\{f_{n}\right\},\left\{g_{n}\right\}$, and $\left\{h_{n}\right\}$ are Fibonacci sequences, then the following summations hold for $y \geq x$.

$$
\begin{align*}
& \sum_{x \leq i \leq y} f_{i+r}=\left[f_{n+r+2}\right]_{n=x-1}^{n=y} \tag{1}\\
& 2 \sum_{x \leq i \leq y} f_{i+r} g_{i+s}= {\left[f_{n+r} g_{n+s+1}+f_{n+r+1} g_{n+s}\right]_{n=x-1}^{n=y} } \\
& 2 \sum_{x \leq i \leq y} f_{i+r} g_{i+s} h_{i+t}= {\left[f_{n+r+1} g_{n+s+1} h_{n+t}+f_{n+r+1} g_{n+s} h_{n+t+1}\right.} \tag{3}\\
&+f_{n+r} g_{n+s+1} h_{n+t+1}-f_{n+r+1} g_{n+s+1} h_{n+t+1} \\
&\left.-f_{n+r} g_{n+s} h_{n+t}\right]_{n=x-1}^{n=y} .
\end{align*}
$$

Proof: The proofs are by induction on y. As base cases we take $y=x-1$; the summations are empty, and the right-hand sides vanish identically. The induction steps are as follows:

$$
\text { 1. } \begin{aligned}
\sum_{x \leq i \leq y+1} f_{i+r} & =\sum_{x \leq i \leq y} f_{i+r}+f_{y+r+1} \\
& =\left[f_{n+r+2}\right]_{n=x-1}^{n=y}+f_{y+r+1} \\
& =\left[f_{y+r+2}+f_{y+r+1}\right]-\left[f_{(x-1)+r+2}\right] \\
& =\left[f_{y+r+3}\right]-\left[f_{(x-1)+r+2}\right] \\
& =\left[f_{n+r+2}\right]_{n=x-1}^{n=y+1}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
2 \sum_{x \leq i \leq y+1} f_{i+r} g_{i+s} & =2 \sum_{x \leq i \leq y} f_{i+r} g_{i+s}+2 f_{y+r+1} g_{y+s+1} \\
& =\left[f_{n+r} g_{n+s+1}+f_{n+r+1} g_{n+s}\right]_{n=x-1}^{n=y}+2 f_{y+r+1} g_{y+s+1}
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[\left(f_{y+r} g_{y+s+1}+f_{y+r+1} g_{y+s+1}\right)+\left(f_{y+r+1} g_{y+s}+f_{y+r+1} g_{y+s+1}\right)\right] } \\
& -\left[f_{(x-1)+r} g_{(x-1)+s+1}+f_{(x-1)+r+1} g_{(x-1)+s}\right] \\
= & {\left[f_{y+r+2} g_{y+s+1}+\beta_{y+r+1} g_{y+s+2}\right] } \\
& -\left[f_{(x-1)+r} g_{(x-1)+s+1}+f_{(x-1)+r+1} g_{(x-1)+s}\right] \\
= & {\left[f_{n+r} g_{n+s+1}+f_{n+r+1} g_{n+s}\right]_{n=x-1}^{n=y+1} . }
\end{aligned}
$$

3. We note that, as in the proofs of (1) and (2), the bottom limit of the right-hand side is unchanged, and we need only prove the following identity related to the top limit y :

$$
\begin{align*}
& {\left[f_{y+r+1} g_{y+s+1} h_{y+t}+f_{y+r+1} g_{y+s} h_{y+t+1}+f_{y+r} g_{y+s+1} h_{y+t+1}\right.} \tag{*}\\
& \left.\quad-f_{y+r+1} g_{y+s+1} h_{y+t+1}-f_{y+r} g_{y+s} h_{y+t}\right]+2 f_{y+r+1} g_{y+s+1} h_{y+t+1} \\
& \quad=\left[f_{y+r+2} g_{y+s+2} g_{y+t+1}+f_{y+r+2} g_{y+s+1} h_{y+t+2}+f_{y+r+1} g_{y+s+2} h_{y+t+2}\right. \\
& \\
& \left.\quad-f_{y+r+2} g_{y+s+2} h_{y+t+2}-f_{y+r+1} g_{y+s+1} h_{y+t+1}\right] .
\end{align*}
$$

As a shorthand notation we let ($\alpha b c$) stand for $f_{y+r+a} g_{y+s+b} h_{y+t+c}$, where a, b, c are 0,1 , or 2 . Then the identity (*) can be written as follows:

$$
\begin{align*}
(110) & +(101)+(011)-(111)-(000)+2(111) \tag{**}\\
& =(221)+(212)+(122)-(222)-(111) .
\end{align*}
$$

The following identities are easily verified, and the validity of (**), and therefore of (3), follows immediately:

$$
\begin{aligned}
& (221)=(001)+(011)+(101)+(111) \\
& (212)=(010)+(110)+(011)+(111) \\
& (122)=(100)+(110)+(101)+(111) \\
& (222)=(000)+(001)+(010)+(011)+(100)+(101)+(110)+(111) .
\end{aligned}
$$

Identity (1) is well known, although it is usually stated in terms of Fibonacci or Lucas numbers with limits of summations 1 to n or 0 to n.

Identity (2) is a generalization of the identities of Berzsenyi [1]. This is easily shown using the following identity, which is easily verified, where $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are generalized Fibonacci sequences:

$$
\begin{equation*}
f_{n+k} g_{m-k}-f_{n} g_{m}=(-1)^{n}\left(f_{k} g_{m-n-k}-f_{0} g_{m-n}\right) \tag{4}
\end{equation*}
$$

We have the following:

$$
2 \sum_{0 \leq i \leq n} f_{i} g_{i+2 m+b}=\left[f_{i+1} g_{i+2 m+b}+f_{i} g_{i+2 m+b+1}\right]_{i=-1}^{i=n}
$$

$$
\begin{aligned}
= & {\left[f_{m+b+i} g_{m+i+1}-(-1)^{i+1}\left(f_{m+b-1} g_{m}-f_{0} g_{2 m+b-1}\right)\right.} \\
& \left.\quad+f_{m+b+i} g_{m+i+1}-(-1)^{i}\left(f_{m+b} g_{m+1}-f_{0} g_{2 m+b+1}\right)\right]_{i=-1}^{i=n} \\
= & {\left[2 f_{m+b+i} g_{m+i+1}+(-1)^{i}\left(f_{m+b-1} g_{m}-f_{m+b} g_{m+1}+f_{0} g_{2 m+b}\right)\right]_{i=-1}^{i=n} }
\end{aligned}
$$

Applying the limits, we obtain the following expression:

$$
\begin{aligned}
\sum_{0 \leq i \leq n} f_{i} g_{i+2 m+b}= & f_{n+m+b} g_{n+m+1}-f_{m+b-1} g_{m} \\
& +\left(\frac{1+(-1)^{n}}{2}\right)\left(f_{m+b-1} g_{m}-f_{m+b} g_{m+1}+f_{0} g_{2 m+b}\right),
\end{aligned}
$$

which is exactly the expression obtained in [1] for even or odd n and $b=0$ or 1.

The advantages of identity (2), besides its attractive symmetry, are that (a) only a single case is needed instead of four separate cases and (b) it is applicable to general limits, not just the sum from 0 to n. In addition, (2) applies to the sum of the product of terms from different generalized Fibonacci sequences, as opposed to the original form in [1].

It should be noted that (4) can also be applied directly to (2), leading to the summation

$$
\sum_{x \leq i \leq y} f_{i+r} g_{i+s}=\left[f_{n+r} g_{n+s+1}+\frac{(-1)^{n+r}}{2}\left(f_{1} g_{s-r}-f_{0} g_{s-r+1}\right)\right]_{n=x-1}^{n=y}
$$

The summation of (2) has also been considered by Pond [1], whose reault is valid for the sum of the products of terms from identical generalized Fibonacci sequences:

$$
\sum_{x \leq i \leq y} f_{i} f_{i+s}=\left[\frac{1}{2}\left(F_{s-3} f_{n} f_{n+1}+F_{s} f_{n+2}^{2}\right)\right]_{n=x-1}^{n=y}
$$

Recall that $\left\{F_{n}\right\}$ is the sequence of Fibonacci numbers. This result is easily derived from (2) by use of the identity $f_{n+r}=F_{r-1} f_{n}+F_{r} f_{n+1}$.

Identity (3) has been considered by Pond [2], again in a simpler context; he requires all three generalized Fibonacci sequences to be identical and derives the following expression:

$$
2 \sum_{x \leq i \leq y} f_{i} f_{i+r} f_{i+s}=\left[\left(F_{s} F_{r}-F_{s-1} F_{r-1}\right) D(-1)^{n} f_{n-1}+f_{s+r+n+1} f_{n} f_{n+1}\right]_{n=x-1}^{n=y}
$$

where $D(-1)^{n}=f_{n-1} f_{n+1}-f_{n}^{2}=(-1)^{n}\left(f_{-1} f_{1}-f_{0}^{2}\right)$. It is not hard to show that this summation is a consequence of (3).

The advantages of identity (3) again 1ie in its pleasing symmetry, its applicability to general limits, and the fact that the summation is valid for products of different Fibonacci sequences.

A general methodology for finding summations of the form of identities (1), (2), or (3) has been discussed elsewhere [3]. This methodology expresses the sum of the products of terms from several sequences, each defined by a linear recurrence, as a standard sum, defined below.

If the sum to be found is

$$
\sum_{x \leq n \leq y} f_{1, n+r_{1}} f_{2, n+r_{2}} \cdots f_{m, n+r_{m}}
$$

where the m sequences $\left\{f_{1}\right\}, \ldots,\left\{f_{m}\right\}$ are defined by linear recurrence relations (i.e., not necessarily Fibonacci sequences), the standard sum is a linear combination

$$
\left[\sum_{\left(i_{1}, \ldots, i_{m}\right) \in I^{m}} a_{i_{1}, i_{2}}, \ldots, i_{m} f_{1, n+r_{1}+i_{1}} f_{2, n+r_{2}+i_{2}} \ldots f_{m, n+r_{m}+i_{m}}\right]_{n=x-1}^{n=y}
$$

with the following important properties:

1. each term of the standard sum is the product of m terms, one from each of the original sequences in the product to be summed;
2. the m-tuples (i_{1}, \ldots, i_{m}) have constant integer components;
3. the coefficients $\alpha_{i_{1}}, \ldots, i_{m}$ are constant and only a bounded number of the coefficients are nonzero.

Of interest is the result that a standard sum for the sum of the products of terms from recurrence sequences does not always exist. In particular, the sum

$$
\sum f_{n+r} g_{n+s} h_{n+t} k_{n+u}
$$

(with $\left\{f_{n}\right\},\left\{g_{n}\right\},\left\{h_{n}\right\}$, and $\left\{k_{n}\right\}$ Fibonacci sequences) cannot be expressed as a standard sum. For details, the interested reader is referred to [3].

References

1. G. Berzsenyi. "Sums of Products of Generalized Fibonacci Numbers." The Fibonacci Quarterly 13, no. 4 (1975):343-344.
2. J. C. Pond. "Generalized Fibonacci Summations." The Fibonacci Quarterly 6, no. 2 (1968):97-108.
3. D. L. Russe11. "Sum of Products of Terms from Linear Recurrence Sequences." Discrete Mathematics 28 (1979):65-79.
