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PROBLEMS 

H-342 Proposed by Paul S. Bruckman, Concord, CA 

Let 

a> K= ¥ U ) ( 2 W > » - ° . i. 2> ••• • 
Prove t h a t 

(2) E w * = 4X+i-
k = o 

H-343 Proposed by Verner E. Hoggatt, Jr., deceased 

Show that every positive integer m has a unique representation in the 
form 

m = U1[i42[i43[...[i4„]...]s 

where Aj = a or a2 for j = 1, 25 . .., n - 1, and 

An = a2, where a = (1 + /fT)/2. 

H-344 Proposed by M. D. Agrawal, Government College, Mandasaur, India 

Prove: 

!• LkLl + 3m - L k + i t m L 2
k + m= (-Dk52F*F2mFk+2m, and 

2- hLL3m ~ ^ + 2 m = 5 ( - D ^ ( L , + ,m + 2 ( - l ) % + 2 J . 

284 
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SOLUTIONS 

Say A 

(Corrected) 
H-324 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

(Vol. 19, No. 1, February 1981) 

Establish the identity 

A - F (F7 + F7) - IF (F6 F + F F6) + 21F (F5 F2 + F2 F5) 

- 35F (Fh F3 + F3 F^) 
= j?7 j? 

kr> 7n+14' 

Solution by Paul S. Bruckman, Concord, CA 

We first observe that there is a misprint in the statement of the 
problem. The first quantity under the first .parenthesis in the definition of 
A should be "F7 ," not "F7

 n ." For brevity, let 
n+hr n + lhv J 

(1) " = Fn+**> V = Fn-

Using the extension to negative integers: 

(2) F.m = (-l)m-XFm, 

we see that we may express A as follows: 
7 

(14-kk)r 

Thus, 

A=Y.o{l)u"-H-vtF, 

k = 0 

where a = - | (1 + / J ) , fc = - | (1 - / 5 ) ; t hus 

A/5 = a^y^(1
1)u7-\-va-hr)k - b^j^ (l)u7-\-vb-hr) 

= alltr(.u - vbhr)7 - bli>r,(u - vahr)7, or 

(3) A/5 = (ua2r - vb2r)7 - iubzr - va2r)7. 

Now 

Also , 

ua2r - vb2r = 5'll2{a2r {an+hr - bn + hr) - b2r (an - bn)} 

= 5-1 / 2 (an + 6 r - bn + 2r - anb2r + bn+2p) 

= 5-1/2an + 2r{ahr -bhr) = an + 2rFhr. 

ub2r - va2r = 5-1/2{b2r (an + hr - bn + hr) - a2r(an - b")} 

'-(an + 2r - bn + er - an + 2r + a2rbn) = 5'll2bn + 2r {ahr - bhr) = bn+2rF t r 
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T h e r e f o r e , A/5 = (an+2rFkr)7 - (bn+2rFkr)7 = (a7n+lhr - b7n+lhr)F7
hr , or 

(A) A -FlrF7n+llir. Q.E.D. 

Also solved by the proposer. 

Sum Fun 

H-325 Proposed by Leonard Carlitz, Duke University, Durham NC 
(Vol. 19, No. 1, February 1981) 

For arbitrary as b put 

Show that j+k-m 

(1) £ sm(a> b)Sn(c, d) = Sp(a + c, b + d) 
m + n = p 

(2) £ (-Dn£'m(a, i)5„(e, d) = Sp (a - d, b - a). 
m + n = p 

Solution by the proposer. 

(3) 
Thus 

We h a v e 

£s„(a 
m = 0 

(3) £ s m ( a , b)x» = £ ( ^ ) ( f c + £ " V + fc- ( l + * ) a ( l - a ) " 6 . 
j . f c -o " J 

£ x ? £ 5 n ( a , 2>)S„(c, d) = J^Sm(a, & ) x r a £ 5 «( G > # * " 
p = 0, m + n=p rn = 0 n = 0 

= (1 + x ) a ( l - x ) " & ( l + x)°(l - x)"d 

= (1 + x ) a + c ( l - x)' •b -d 

= ^ Sp(a + e, b + d)xp. 
p = 0 

Equating coefficients of xp, we get (1). By (3) we have 

£ (~l)nSn(c, d)xn = (1 - x)° (1 + xYd . 
n = 0 

Hence 
- & /1 ™\ ° /1 i_ ™\- d £ *P L (-D"Sn(a, i)S„(c, d) = (1 + x)a(l - x)"6(l - x)° (l + x)~ 

p'°  m+n-p - (1 +x) a^(l -x)-(b"c> 
and (2) follows immediately. 

Also solved by P. Bruckman. 

A "Primitive Solution 

H-326 Proposed by Larry Taylor, Briarwood, NY 
(Vol. 19, No. 1, February 1981) 

(A) If p E 7 or 31 (mod 36) is prime and (p - l)/6 is also prime, prove that 
32(1 ± Z11^) is a primitive root of p. 
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(B) If p - 13 or 61 (mod 72) is prime and (p - 1)/12 is also prime, prove that 
32(i/̂ T ± /3) is a primitive root of p. 

For example, 11 = /^3 (mod 31), 12 and 21 are primitive roots of 31; 
11 E y^T (mod 61), 8 E /J (mod 61), 59 and 35 are primitive roots of 61. 

Solution by Paul S. Bruckman, Concord, CA 

Part (A) : We must first show that (-3/p) = 1, so that we can indeed define 
#E32(1±/-T) (modp). Since (p/3) = (7/3) = (31/3) = 1, thus (3/p) (p/3) = 
(-l)1/2(p_1) = -1, or (3/p) = -1. Thus, 

(-3/p) = (-l/p)(3/p) = (-l)1/2(p-1}(3/p) = (-1)2 = 1, 

which shows that x exists. 

Let W E 2~1(1 ± /=3) (mod p). Thus x E 26w (mod p). Note that p > 7, 
since q = (p - l)/6 must be prime. Note also that W3 E -1 (mod p). This im-
plies that w % \ (mod p) . Also, u ̂  -1 (mod p) , for if we suppose w E -1 
(mod p), then 

1 ± /^3 E -2 (mod p) => ±/=3" = -3 (mod p) => -3 E 9 (mod p) =̂> p|l2, 

a contradiction. We observe further that, whichever sign is taken with /^3~ 
in the definition of W, the other sign must be taken to define w'1, since 

2"1(1 +/=I)2":L(1 - vQT) E 4_1 • 4 E 1 (mod p) . 

But, since w3 E -1 (mod p), thus w_1 E -w2 (mod p). We conclude that w t ±1 
(mod p) and W2 f ±1 (mod p). 

In order to show that x is a primitive root of p, it suffices to show 
that xm t 1 (mod p) for all proper divisors 777 of <p(p) =p - 1 = 6q. Since all 
the proper divisors of 6q divide at least one of the exponents 6, 2q, and 3q, 
it suffices to show that x6, x2q, and #3c? are ̂  1 (mod p) . 

Now x6 E 236w6 E 236(-l)2 E 236 (mod p). Note that 

2
3 6 - 1 = 33 . 5 . 7 • 13 • 19 • 37 • 73 • 109. 

Since all the primes in this decomposition are f 7 or 31 (mod 36), with the 
exception of 7, which is excluded, the congruence 236 E 1 (mod p) is impos-
sible. Thus x6 t 1 (mod p). 

Since q = 6r ± 1 for some r, w"7 E u6 r ± 1 E ZJ±:LE w or-W2 ? ±1 (mod p) ; 
similarly, fa-1)* ? ±1 (mod p) . Thus, a;* = 26<?z^ E 2P"V? = wq 1 1 (mod p) . 

Thus, x2? E (w2)^ E (-aT1)* E -(w-1)q 1 1 (mod p) . Finally, 

x3q E (W3)^ E (-1)* E -1 £ 1 (mod p). 

This completes the proof of (A). 

Part (B): The proof of (B) is patterned after that for (A). Since 

(p/3) = (13/3) = (61/3) = 1, 

thus (3/p)(p/3) = (-l)1/2(p-1} = 1, or (3/p)=l. Also, (-1/p) = (_i)V2(p-D = lo 
Defining y E 32(/^T ± /J) (mod p) , we then see that y exists. Also, we see 
that (-3/p) = 1. 

Let 9 E 2~1(/T ± /3) (mod p) . Then y E 269 (mod p) . Note that p> 13, 
since q = (p - 1)/12 must be prime. Note also that 02 E 2_1(1 ± A3) (mod p) , 
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and 66 = -1 (mod p) . This implies that 6 and 83 are f ±1 (mod p) and 92 f 1 
(mod p) . Moreover, 92 f -1 (mod p) , for the congruence 92 E -1 (mod p) would, 
as in part (A) , lead to a contradiction. Also, whichever sign is taken with 
./5" in the definition of 9, the other sign must be taken to define -9 ~1, since 

2'1(/=T+,y3)2"1(/=T - /3) = 4"1(-1.- 3) E -1 (mod p) . 

Therefore, 9 ~1 ? ±1 (mod p) . Combining this with the congruences 92 E -9~lf 

(mod p) and 83 E -9~3 (mod p) , we conclude that 9^ f ±1 (mod p) if fc = ±1, 
±2, ±3, ±4, or ±5. 

In order to show that y is a primitive root of p, it suffices to show 
that ym ? 1 (modp) for all proper divisors m of <p(p) = 12q. Since all the 
proper divisors of \2q divide at least one of the exponents 12, 3q9 and Aq9 
it suffices to show that y12, y3q , and z/4c? are t 1 (mod p) . 

Now y12 ~ 272912 E 272(-l)2 = 272 (mod p). We may verify that 

272 - 1 = 33 • 5 • 7 • 13 • 17 • 19 • 37 • 73 • 109 • 241 • 433 • 38,737, 

this being the prime decomposition. Since the only prime in this decomposi-
tion that is E 13 or 61 (mod 72) is 13, which is excluded, we see that 272 t 
1 (mod p). Therefore, y12 $ 1 (mod p). 

Since q = 6r ± 1 for some r9 thus 

yq E 2SqQq E 2l/2(p-l)96r±l = .(2/p) (-1)'0 " E ±0 ±X f ±1 (mod p) . 

Therefore, 

z/3? E ± 9 ± 3 E 9 ± 3 ? 1 (mod p ) , 
and 

z / ^ E 9±I+ ^ 1 (mod p ) . 

This completes the proof of part (B). 

Also solved by the proposer. 
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