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0. Introduction 

This paper investigates some problems concerning PRIMITIVE PYTHAGOREAN 
TRIPLES (PPT) and succeeds in solving, completely or partially, some of these 
problems while leaving open others. Dickson [2], in his three-volume history 
of number theory has given a twenty-five-page account of what was achieved 
in the field of Pythagorean triangles during more than two millenia and up to 
Euler and modern times. Therefore, it is surprising that still more ques-
tions can be asked which, in their intriguing simplicity, do not lag behind 
anything the human mind has been occupied with since the times of Hamurabi. 
The author thinks that, in spite of the accelerated speed with which the mod-
ern mathematical creativeness is advancing in the era of Godel and Matajase-
vich, some of his unanswered questions will remain enigmatic for many decades 
to come. 

1. Definition 

There are a variety of definitions on the subject of PPTs. The author 
thinks that he was able to come up with some of his results thanks to a sim-
plification of on such definition, which is as follows: 

Definition 1 

A triple (x, y9 z) of natural numbers if a PPT iff there exists a pair 
(u, v) of natural numbers such that 

x = u2 - v2, y = 2uv, z• = u2 + v2, 
(1.1) 

(u, v) = 19 u + V - 1 (mod 2). 

The pair of numbers (u, v) as introduced in Definition 1 is called a genera-
tor of the PPT (x, z/, z) . We shall use the chain of inequalities 

(1.2) 2u > u + v > u, 

which follows from Definition 1. 

227 
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All small italic letters appearing in this paper denote natural numbers, 
1, 2, 3, . .., if not stated otherwise. 

By virtue of Definition 1,a countability of all PPTs has been established, 
namely, 

(u9 v) = (2, 1) =̂> (x9 y9 z) = (3, 4, 5); 

(u9 v) = (3, 2) ^ (x9 y9 z) = (5, 12, 13); 

(u9 v) = (4, 1) =*> (x, y9 z) = (15, 8, 17); 

(u9 v) = (4, 3) >̂ (x9 y9 z) = (7, 24, 25); 

etc. 

If we drop the condition (u, v) = 1 in (1.1), then the resulting triple 
(x9 y9 z) is a Nonprimitive Pythagorean Triple. They are of no interest to 
us. 

2. Pythagorean Frequency Indicator 

We introduce the interesting 

Definition 2 

The number of times the integer n appears in some PPT, excluding order, 
is called the PYTHAGOREAN FREQUENCY INDICATOR (PFI) of n. The PFI of n is 
denoted by f(n). We write f(n) = 2~°°, if n does not appear in any PPT. As 
we shall see later, 

/(l) - 2"00, f(2) = 2"~, f(3) = 1, 

f(4) - 1, f(5) = 2 , ..., /(84) = 4, etc. 

The following result is due to Landau [4]: 

Theorem 1 

The number of positive solutions L(ri) of x + y2 = n (excluding order), 
with Or, y) = 1 and 

k 

(2.1) x2 + y2 = n - II P.Si 9 P. a n °dd prime, 
i = i % ^ 

is given by 

(2.2) L(n) = 2k~1 if each p. = 1 (mod 4) 
^ 

and 

(2.3) L(n) = 0, if at least one p. E 3 (mod 4). 
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Landaufs theorem also elaborates on such numbers n which are not of the form 
(2.1) with (2.2) or (2.3), but that is not relevant for us. To state the main 
theorem of this chapter, it is useful to introduce the following. 

Let n be as in (2.1). If all primes are as in (2.2), we let n = 0(k9 1); 
otherwise, we let n - 0(/c, 3). 

Theorem 2 

The PFI of any number n equals 

f(l) = /(2) = f(2 0(k, 1) ) = f(2 0(k, 3) ) = 2 -
(2.4) 

f{ 0{k + 1, 3) ) = /( 0(fe, 1) ) = /(2S+ 1 0(fc, 1) ) 

= f(2s+1 0(k, 3) ) = 2k, 8 > 1 . 

Proof: We have, by Definition 1, x = z = 1 (mod 2) , y = 0 (mod 4), and 
x9 z £ 1. This proves the first line of (2.4). When n = 0(k + 1, 3), then 
only n = x is possible by Theorem 1. Let n = fg with (/, g) - 1 and f > g. 
Since (u9 v) = 1 and n = (w - i?) (w + #) » we have 

u = 2"(f + g) and y = j(f - #) . 

But, 

is the total number of pairs {/, g} with (/, g) = 1. Hence, we have only 2k 

pairs with f > g. Now let n = 0(fc, 1). When n = z there are, by Theorem 2, 
2?c~1 pairs (u, y) such that u2 + v2 = n; when n = x there are 2 T_1 pairs, by 
the same argument given for n = 0(/c + 1, 3). Hence, /( 0(fc, 1) )• = 2fe. Let 
n = 2/ = 2s+10(k, 0) or n == 2s+10(k, 3). Let n = 2s+1fg, where (/, #) = 1. 
Since there are only 2k~1 pairs (/, g), excluding order, with (/, g) = 1, we 
can choose u = 2s/ and v = g or u = f and y = 2sg\ Hence, there are 2k pos-
sibilities. This proves the second line of Theorem 2, and proves the theorem 
completely. 

Theorem 2 also holds for n = 2s + 1 with the symbolism n = 2s + lp , since 
f(2s+1) = 2°  = 1. The following examples illustrate the use of Theorem 2: 

/(2Sl+1) = f(p&2) = 2°  = 1, p any odd prime, p = 3 (mod 4). 

f(2Sl+1p ) = 21 = 2, p any odd prime. 

f(qs) = 21 = 2, 4 = 1 (mod 4), q prime. 

f(p°ip*i) = 21, not both p ^ p2 = 1 (mod 4), p1, p2 odd primes. 

fip^p^P*3) = 22 = 4, p , p , p odd primes not all contruent to 1 
modulo 4. 
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f(qtlqtl) = 22 = 4, q 3 q odd primes congruent to 1 modulo-4. 

f{2s + 1ptqr) = 22 = 43, p, q any odd primes, etc. 

We have /(60) = /(4 • 3 • 5) = 22 = 4. The corresponding PPTs are (899, 60, 
901), (91, 60, 109), (11, 60, 61), (221, 60, 229). Also, /(16) = f(24) = 1. 
The corresponding PPT is (63, 16, 65). 

We let the smallest integer n such that f(n) = 2k (k = -°°, 0, 1, 2, ...) 
be denoted by M(n, k) . 

It is easily seen that M(n, -°°) = 1, Af(n, 0) = 3, M(n9 1) = 5. An inter-
esting result is stated in Theorem 3, but first we let p19 p2, ... denote the 
successive odd primes and we denote the product of k successive odd primes 
b y n/c = P1P2 •••• pk-

Theorem 3 

If k >_ 2 then M(n, k) = 4nfe . 

Proof: The reader can easily verify the relations 

28+10('fc, 1) > 0(k, 1) > 4nfe, 

2s+10(k, 3) > 4nk 
and 

0(fe + 1, 3) > 4nk, 

if k >_ 2, while all have the same value of f(n) = 2k. This proves the theo-
rem. We thus have M(n, 2) = 4II2 = 60, M(n, 3) = 4 • 3 • 5 • 7 = 420, etc. 
Hence, 420 is the smallest number which appears exactly eight times in PPTs. 

3. Perimeters 

This is the most important part of our paper. It contains problems never 
investigated previously. To clarify them, we start with: 

Definition 3 

Let (x, y9 z) be a PPT and (u, v) be its. generator. We call the sum x + 
y + z the PERIMETER of PPT. 

We denote the perimeter of a PPT with generator (u, v) by 

(3.1) II(u, v)=x+y + z = 2u(u + v) = IT. 

Thus n(2, 1) = 12, n(3, 2) = 30, 11(4, 1) = 40, etc. Different PPTs may have 
the same II for different generators. An example of this will be given in 
Theorem 5. (No two different generators can lead to the same PPT.) Accord-
ingly, we introduce: 
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Definition 4 

The (exact) number of different PPTs having the same perimeter is called 
the DOMAIN of this perimeter. In symbols, we write Z?(IT) = k if the number of 
generator pairs in the set {(u, v)\ll(us v) = II} is k. Since a number n may 
not be a perimeter, we introduce the notation n £ IT and write Z?(IT) = 0. 

By (3.1), every perimeter is even. Hence D(2t + 1) = 0. Let m = 1 (mod 
2) and p be an odd prime such that pt > 2s m for some s with (p, m) = 1. It 
is easy to prove that D(2smpt) = 0. The method of proving this will emerge 
from the sequel. 

Theorem 4 

Let p be an odd p r ime . 

a) If 2 s + 1 p = n and 2 S + 1 > p > 2 8 , then D(2s+1p) = 1. 

(3 .2 ) b) If 2p*(p* + 1) = n , then D(2pHpt + 2) ) = 1. 

c) If pt(pt + 1) = II, then D(pt(pt + 1)) = 1. 

Proof: Generally, in order to investigate whether a given n is or is not 
a perimeter, it suffices to write n in the form 2u(u + v), where (u, v) is a 
generator. Then make use of the relation (1.2). 

To prove [(3.2), a], we proceed as follows. Let 2s+1p = 2u(u + v), then 
2sp = u(u + v). Since u + V = 1 (mod 2), we have 23\u. There are therefore 
two cases p\u or p | (u + y) .. If p\u9 we have w = 2sp and u + t; = 1, which is 
impossible because u + z; < u. If p | (u + v) , we have w = 2s, w + v = p, and 
y = p - 2s. By hypothesis, u < u + v < 2u. Obviously (us v) - 1 and u + V = 1 
(mod 2), so (u, y) is a generator and Z}(2s + 1p) = 1. 

To prove [ (3.2) , b] , we let pt(pt + 2) = u(u + v) . Since p* + 2 may fac-
tor, we assume pt + 2 = fg with f > g. With p*/^ = u(w + y), there are two 
obvious cases to consider. They are J 

u = p t 9 v = fg _ pt a n ci u = fg9 v = pt _ ^ . 

The latter case is out, since we need v > 0. The former case yields a solu-
tion since (u, v)=l9u+v=l (mod 2), and u < u + V < 2u. With (/, g) = 
1, ̂  ^ 1, there are six more possibilities, all of which can be ruled out, 
since the relations 

p*fg < 1, ptfg < 2, g < p*f < 2g, p*f < g < 2fp*9 

f < p*g < 2f, and gp* < f < 2gp* 

are impossible. Therefore, D(2pt(pt + 2)) = 1 . 

An argument similar to that of [(3.2), b] will show that the only solu-
tion for [(3.2), c] is u= (p*+ l)/2, v= (p* - l)/2, so that D(pt(pt+ 1)) = 1, 
completing the proof of the theorem. 
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The following is an immediate consequence of Theorem 4. 

Corollary 

Let 2P~1(2P - 1), p prime, be a perfect number. Then 2P-1(2P - 1) cannot 
be a perimeter, while 2P(2P - 1) can be a perimeter only once. 

Theorem 4 also shows that there are infinitely many PPTs of domain 1. We 
prove the following interesting result. 

Theorem 5 

Let be an odd prime. 

a) When p > 6, 12p(p + .2) =11 has D(Jl) = 1 if p = 1 (mod 3) 
and D(Jl) = 2 if p E -1 (mod 3). 

(3.3) 
b) When p > 8, 12p(p - 2) = II has £(11) = 1 if.p = -1 (mod 3) 

and DQI) = 2 if p = 1 (mod 3). 

Proof: Since 6p(p + 2) = u(u + v)9 where u is even, u + v = 1 (mod 2) 
and (u, u + v) = 1, we have eight possible cases for the choices of the fac-
tors of u and u + V. However, we need u < u + v < 2w, so six of these cases 
can be eliminated immediately leaving only 

(3.4) u = 2p, v = 3p + 6 - 2p = p + 6 

and 

(3.5) u - 2(p + 1), v = p - 4. 

When p = 1 (mod 3), then (3.5) is not a valid generator, since (u, f) ^ 1. 
However, (3.4) is a generator with perimeter 12p(p + 2). When p E -1 (mod 3) 
both (3.4) and (3.5) are valid generators of 12p(p + 2), since (u, v) - 1, 
u + v = 1 (mod 2), and u < u + v < 2u. 

Let 6p(p - 2) = II. A similar argument to that of part (a) shows that 

(3.6) u = 2p, v = p - 6 

and 

(3.7) w = 2(p - 2), z; = p + 4 

are generators of 12p(p - 2) if p = 1 (mod 3), while only (3.6) is a valid 
generator if p = -1 (mod 3). 

By Dirichlet!s theorem and Theorem 5, we know there are infinitely many 
PPTs with D(J[) = 2. 

Actually, Theorem 5 is a special case of the following more general the-
orem whose proof we omit because of its similarity to that of Theorem 5. 
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Theorem 5a 

Let p be an odd prime. Let q be a prime such that 2q - 1 is a prime. 

(i) When p > 2(2^ - 1) , 2^(2* - l)p(p + 2) = II has D(Tl) = 1 if p = -2 
(mod 2^ - 1) and 0(11) = 2 if p ^ -2 (mod 2* - 1) . The solutions 
are 

u = 2«~1p» y = (2<?_1 - l)p + 2(2* - 1) 
and 

u = 2q'1(p + 2), y = (2q~1 - l)p - 2q 

If p 1 -2 (mod 2* - 1). If p E 2 (mod 2* - 1), only the first so-
lution is a valid generator. 

(ii) When p > 2q+1, 2*(2q - l)p(p - 2) = II has Z)(II) = 1 if p E 2 (mod 
2q - 1) and D(Ji) = 2 if p £ 2 (mod 2* - 1). The solutions are 

u = 2q"lp9 V = (2*"1 - l)p - 2(2* - 1) 
and 

u ~ 2q~1(p - 2), v = (2*-1 - l)p + 2* 

if p 1 2 (mod 2* - 1). If p = 2 (mod 2* - 1), only the first solu-
tion is a valid generator. 

When p E -1 (mod 3) and p + 2 is also a prime, the two solutions of parts 
(a) and (b) of Theorem 5 are the same. Hence, twin primes enter into our 
analysis of the perimeter problem. 

It is easy to show that the smallest value of II with D(Jl) = 2 is 

12 • II • 13 = 1716. 

The generators are II = 11(22, 17) = 11(26, 7), whose Pythagorean triples are, 
respectively, (195, 748, 773) and (627, 364, 725). 

4. More on Domains 

The following two theorems state the most important results of this 
paper. In the sequel, it will be convenient to denote the two numbers T = ps 

and T + 2 = qt, where p, q are odd primes, by prime power twins. We state: 

Theorem 6 

Let 

II = 2u(u + v) , T and T + 2 be prime power t w i n s , 

T > n , D{Jl) = k9 and (II, T(T + 2) ) = 1. 
(4 .1 ) 

Then 

(4 .2 ) n f = TIT(T + 2 ) i s a p e r i m e t e r wi th D(Jif) = Ik. 



234 PRIMITIVE PYTHAGOREAN TRIPLES [Aug. 

Proof: We prove that any generator for II leads to exactly two generators 
for IIf. Since T > II > 2(u + v) , we see that 

(4.3) T > 2(w + v)/(u - v) and T > 2u/v. 

But, (4.3) implies that T(u - v)/(u + v) > 2, so 2uT/(u + v) > (T + 2) or 

(4.4) 2uT > (u + v)(T + 2) > u2\ 

Furthermore, from (4.3) we obtain 2/T < v/u, so 

{T + 2)/T < (u + v)/u or (w + y)!T > u(T + 2). 

Hence, by (1.2), 

(4.5) 2u(T + 1) > (u + v)T > u(T + 2 ) . 

Since we want IIf = TIT(T + 2 ) = 2u(u + v)T(T + 2) = 2x(x + 2/), where (x9 z/.) is 
a generator, there are sixteen possible ways of choosing the factors of 
u(u + v)T(T + 2) for a: and x + y. However, we need x < x + y < 2x. There-
fore, fourteen of these possibilities can be easily eliminated. For example, 
if x = u(u + v) and x + y = .T(T + 2), then 

T(T + 2) > 2(u + y)(T + 2) > 2(u + i;)T > 4(w + i>)2 > 2u(w + y), 

so a? + y > 2x. As another example, let x = T(T + 2) and x + z/ = u(w + i>) . 
Then 

r(T + 2) > u(u + y), 

so x > x + y. The only two cases that satisfy x < x + y < 2x, by (4.4) and 
(4.5), are 

(4.6) x = uT, x + y = (w + y) (T + 2) , 2/ = (u + v) (T + 2) - uT 

and 

(4.7) x = u(T + 2), x + y = (w + ^)T, y = vT - 2u. 

In both of these cases, it is easy to show that (x9y)=l9x+y=l (mod 2) 
and 2x(x + z/) = 11'. 

Because u(u + 1?) ~ f @ g with (/, g) = 1, where / > ̂  is possible, since 
u(u + v) = ps, p a prime, is impossible, we need to show that these factori-
zations do not lead to any new generators of II'. We let f > 2g 9 then 2g > f> g 
and 2f>g>f are both impossible, so that (/, g) is not a generator of II. 

With 2u(u + v)T(T + 2) = 2fgT(T + 2) = 2x(x + y) , where (x, y) is a gen-
erator, there are, again, sixteen possible ways of choosing the factors of 
fgT(T + 2) for x and x + y. All of these cases are easily eliminated. For 
example, if x + z/ = g(T + 2) and x = fT, then /T > 2#t > #(T + 2) , so x > x + y, 
which contradicts (x, zy) being a generator; as another example, let x + y = gT 
and x = /(21 + 2), then /(T + 2) > 2#(27 + 2 ) > gT and again x>x+y, which is 
a contradiction. As our final example, we choose x + y = fT and x = ̂ (T + 2). 
Then kg > (/ - 2^)^ > T > 2w(w'+ y) = 2/#, so that 2 > /, which is a contra-
diction. We leave the other cases to the reader. 
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Hence, we have proved that'the only generators for IT' are the generators 
for II, each of which leads to exactly two generators for II'. This proves the 
theorem. 

Example 

Let n = 11(22, 17) = n(26, 7) = 1716. We choose T = 1721 and T + 2 = 1723, 
where 1721 and 1723 are primes with T > II. Hence, 

n' = 1716 • 1721 • 1723, D(Jlr) = 4, 
and 

nf = nf(37862, 29335) = II'(37906, 29213) 

= II'(44746, 12113) =II'(44798, 11995). 

With doubling the D(Ji) 9 the PPTs grow enormously, since T > II. Hence, if the 
T' s are finite in number, there may be an upper bound for Z?(H) . The follow-
ing modification of Theorem 6 may somehow be helpful. 

Theorem 6a 

Let 

II = 2u(u + V) , (T9 T + 2) be prime power twins, D(Tl) = k9 
(II, T(T + 2)) = 1, and T > 2(u + v). 

(/ ft. Let the number of pairs (/, g) - 1, such that 

u(u + v) = / * g9 f > 2g9 and 2g(T + 2) > fT > g{T + 2) 

with f odd be m9 where 777 = 0, 1, 2, ... . 

Then D(Jlr) = D(IIT(T + 2)) = 2k + m. 

Proof: With T > 2{u + v) 2. 2(u + v)/(u - v) and T > 2{u + v) > 2u/v, we 
prove, as in Theorem 6, that each generator for II leads to exactly two gen-
erators of n' = 2u(u + v)T(T + 2). Since 2g(T + 2 ) > fT > g(T + 2), (4.5) 
would account for another solution, so D(Ur) = 2k + m9 m 2. 0. The author was 
unable to find an example where 77? ̂  0. 

Example 

Let n = 11(22, 17) = 11(26, 7) = 1716, then 2(u + v) equals 78 or 66. For 
T > 78, we choose T = 101 and T + 2 = 103. We then have 

g . f = 6(11 • 13) = 2(3 • 11 • 13) 

with 2g < f and / odd. But in neither of these cases does the relation 

2g(T + 2) > fT > g(T + 2) 
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hold, as can be easily verified. When T > 66, we choose T = 71 and T + 2 = 
73. Then 

g • / = 6(11 • 13) = (3 • 11 • 13). 

Again, in neither case, is 

2g{T + 2) > fT > g(T + 2 ) . 

Thus, m = 0 and II' = 1716 • 101 • 103 has D(Jlr) = 4. 

Theorem 7 

Let II = 2u(u + v) . Let (T, T + 2) be prime power twins with 

(n, T(T + 2)) = 1. 

Let D(J[) = k. Further, let 

1, u - v >_ 5, and v >_ 3, or 

1, u - V >_ 6, and v >_ 5 with w odd. 

Then 
nf = 2u(u + v)T(T + 2) has D(Jlf) = 2fe + 1 + m, 

(4.10) 
7W as in Theorem 6a. 

Proof: With the restrictions on u - v, and v from (4.9), we can easily 
prove that 

/ n \ 1/2 

1 > 2(u + v)Ku - v) and (̂  + l) - 1 > 2u/v. 

1 > 2(w + f)/(u - y) and (̂  + l) - 1 > 2u/v. 

Thus, T > 2(u + v)/(u - v) and T > 2u/f. From these last two relations, it 
is then proved, as before, that every generator (u, v) for II leads to exactly 
two generators for II' = 2u(u + v)T(T + 2 ) . We further have, from part (b) of 
(4.9), that 

2T(T + 1) > w(w + v) > T(T + 2), 

and from part (a) of (4.9) that 

2u(u + V) > T(T + 2) > u(u + v) for a fixed 2\ 

This would account for the additional generator for IIf. The meaning of the 
possible m generators for II' is the same as in Theorem 6a. This completes 
the proof of Theorem 7. 

(4 .9 ) 

/n \1/2 

\j + I) - I < T < (n + i) 

(!»r-<"ii») 
1/2 

1/2 

Also 
(1*0 

1/2 

1/2 
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The reader may ask whether in the intervals given by (4.9) there is al-
ways a prime power (or prime) T. This fundamental question is answered af-
firmatively by a famous theorem by Chebyshev [1] which states that in the 
interval (y, (1 + e)y) , e > 1/5 there is always, from a certain point on, one 
prime, from a further point on, two primes, etc. The reader will easily veri-
fy that the intervals (4.9) satisfy the conditions of Chebyshev1s theorem. 

As our first example, we choose II = 11(40, 3) = 3440, so that /1721 - 1 < 
T < /3440 - 1 or 40 < T < 57. With T = 41 and T + 2 = 43, we have 

(n, T(T + 2)) = 43, 

so that Theorems 6, 6a, and 7 do not apply. We choose T = 47 and T + 2 = 72. 
Note that D(Ji) = 1 and K' = 3440 • 47 • 49 = 7922320. Since 1720 = 8(5- 43) = 
gf with / > 2g and / odd does not yield 

2g(T + 2) > fT > g(T + 2), 

we have m = 0 and D(Ur) = 3. 

As another example, we choose 11(46, 29) = 11(50, 19) = 4 • 3 • 23 ? 25 = 6900 
so that D(Jiy = 2 = k. We have u - V = 17, V = 29 and u - v = 31, v = 19. 
Further 

y|- • 6900 + 1 - 1 < T < /6900 + 1 - 1, 

and we choose T = 59, T + 2 = 61, so that IIf = 6900 -59-61 = 24833100. We 
also have u(u + v) = 6(23 • 25) = 2(3 • 23 • 25) = fg with f > 2 and f odd. 
But the condition 

2g(T + 2) > fT > g(T + 2) 

is not satisfied here. Thus, by Theorem 7, V(J[f) = £(24833100) = 5. The au-
thor leaves it to the reader to find the value of #(11') when 2 7 = 7 1 , T + 2 = 
73 and T = 79, T + 2 = 3h. 

5. n-Periadic Numbers 

We introduce 

Definition 5 

A number t is called n-PERIADIC if t" is a perimeter but tn+1 is not. 

If tn is a perimeter, then there exist x and i/ relatively prime such that 
x + y = 1 (mod 2), 2x(x + y) - t n , and ^ < x + t < 2x. Hence, there exist u 
and v relatively prime such that x = 2n'1un and x + y = Vn. Furthermore, 
2(n'1)/nu < v < 2u. If tn + 1 is not a perimeter, then v < 2n/n + 1u . This proves 
the necessary part of the following theorem. 
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Theorem 8 

The number t is n-periadic iff there exists (u, v) = 1 such that 

(5.1) 2("- 1 ) / n
M < v < 2u and V < 2"/(n + 1)

M. 

We leave a proof of the sufficiency part to the reader. 

From (5.1), we see that V > 2(n~1)/nu > fl + n ~ l In 2Ju, so 

(5.2) n—±<!L<2. 
n u 

I V 

When n = 2, (5.2) yields — < — < 2. Choose v = 6s + 1 and u = 4s + 1 with 

s _> 2. Then (w, y) = 1 and t;2 > 2u2. Furthermore, v3 < 4u3. Let 
as = 2(4s + I)2 and x + y = (6a; + l) 2, 

as in the proof of the theorem. Then 

(5.3) t = n(4s + 1, 2s) 

is 2-periadic. In particulars with s - 2, we have that 11(9, 4) = 18 • 13 is 
2-periadic with generator x = 162, y - 7. 

When n = 3, (5.2) yields - < - < 2. Choose V = 10s +. 1 and u = 6s + 1 with 

s > 2. Then (u, v) .= 1, i?3 > 4u3 and ̂  < 8U4 . Let 

x = 4(6s + l)3 and y + x = (10s + l)3. 
Then 

(5.4) t = n(6s + 1, 4s) 

is 3-periadic. In particular, for s = 2, we have 

v = 21, u = 13, x = 4 • 133 = 8788, z/ = 473 

and t = 11(13, 8) is 3-periadic. 

By this method, we can obtain any n-periadic number. However, those ob-
tained by (5.3) and (5.4) are by far not all of the infinitely many 2-periadic 
and 3-periadic numbers. 

Conspicuously absent are the 1-periadic numbers. We have, 

(5.5) n = Ii(u, 1), u _> 3 

is 1-periadic, since 2u > u + 1 > u and (u + l)2 > 2u2. 

The reader should not overlook the following trivial relation. Let 
II(w, v) = 2u(u + v) 9 then 

(5.6) (U(u, v))n = H(2n-1un, (w + t;)n - 2M-1un), n > 1. 
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Note t h a t i f Ti(u, v) = x + y + z9 then 

II (u , v) 2 = #11 (u , v) + z/II(u, V) + sll(w, y ) , 
bu t 

(II (u , v)x9 TT(u:, y)z/, II (u , v)z) + Jl(u, v) . 

In this context, we prove 

Theorem 9 

For every perimeter R(u9 v) there exists at least one prime p such that 
pll(w, v) is a perimeter. 

Proof: Let II = 2u(u + V). By Bert-rand's postulate, there is at least 
one prime p such that 2u(u + v) > p > u(u + v) . Hence, 2u(u + v)p is a per-
imeter. 

6. Associating with Fibonacci 

We introduce 

Definition 6 

Let (x9 y, z) be a PPT. It is called associative if f(x) = /(z/) = f(z)9 
nonassociative if all PFIs of x9 y9 z are dif f erent, quasi-associative if the 
PFIs of exactly any two x9 y9 z are equal. If 

fix) = f(y) = /(a) = 2k
9 k = 0, 1, ..., 

we say the PPT = (x9 y9 z) is k-associative. 

Examples 

(3, 4, 5) is quasi-associative, 

(5, 12, 13) is 1-associative, 

(7, 24, 25) is quasi-associative, 

(99, 100, 101) is 1-associative, since /(99) = f(32 • 11) = 21, 
/(100) = /(4 • 52) = 21 and /(101) = 21, 

(675, 52, 677) is quasi-associative, 

(11, 60, 61) is nonassociative, since f(ll) = 2 , 
f(60) = f<4 • 3 • 5) = 22, /(61) = 21, 

(3477, 236, 3485) is nonassociative, since /(3477) = /(3 • 19 • 61) = 22, 
/(236) = /(4 • 59) = 21, /(3485) = /(5 • 17 • 41) = 23. 
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The Fibonacci sequence 

P1 =P2 = L Fn+2 =Fn +Fn+1 in = 1, 2, . . . ) , 

has solved and raised many puzzles. Every mathematician should have a copy 
of HoggattTs precious booklet [3] on this subject. Since F6k+3 = 2 (mod 4), 
F6k+3 does not appear in any PPT; all other Fn , n > 3, do. F12 = 144 has 
II = II(89 1), with the PPT being (63, 16, 65). The only Fibonacci numbers 
known to appear in the same PPT are 3, 5 and 5, 13, see [5]. The Fibonacci 
number F8 - 21 has (21) = 2 where the two PPTs are (21, 20, 29) and (21, 220, 
221). Note that (21, 220, 221) is quasi-associative, since 

/(21) - /(3 • 7) = 21, /(220) = f(4 • 5 • 11) = 22, 
and 

/(221) = f(13 • 17) = 22. 

Observe that (21, 20, 29) is also quasi-associative. The Fibonacci number 
F11 = 89 appears in (89, 3960, 3961) with 

/(89) = 21, /(3960) = /(8 • 32 • 5 • 11) - 23, 
and 

/(3961) = f(17 • 233) = 22. 

Hence, the triple is nonassociative. The first Fibonacci number which is a 
perimeter is 144, the largest perfect square in the Fibonacci sequence. 
n(8s 1) = 144 leads to the PPT (63, 16, 65), with D(144) = 1. This PPT is 
nonassociative with 

/(63) = 21, /(16) = 2° , /(65) = 22. 

Concluding, we want to point out that apart from the riddle of associativity 
the most saddening unsolved problem in this paper is the question of whether 
or not there are infinitely many PPTs of any given domain. Since a solution 
seems to hinge on the unsolved problem of the number of prime twins, it seems 
to be a difficult problem. 
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