A PROPERTY OF BINOMIAL COEFFICIENTS (Submitted February 1981)

MAURO BOSCAROL

Libera Università di Trento, I-38050, Povo (Trento), Italy

The purpose of this paper is to prove identity (1), related to the binomial coefficients.

For each pair of integers $n, m \ge 0$, the following identity holds:

(1)
$$\sum_{i=0}^{m} \frac{\binom{n+i}{i}}{2^{n+i}} + \sum_{h=0}^{n} \frac{\binom{n+m-h}{m}}{2^{n+m-h}} = 2.$$

The meaning of this identity becomes more clear if one considers Pascal's triangle:

													n
						1							0
					1		1						1
				1		2		1					2
			1		3		3		1				3
		1		4		6		4		1			4
	1		5		10		10		5		1		5
1		6		15		20		15		6		1	6

Let us consider a path which starts from any point on the left side and goes down following a line parallel to the right side, then stops at any point and goes up again, following a line parallel to the left side, until it reaches the right side. If we add all the binomial coefficients we have met, each multiplied by 2^{-n} , the result is always 2. (The binomial coefficient at the turning point of the path being considered twice.) For example, the following path yields

$$\frac{\binom{4}{0}}{2^{4}} + \frac{\binom{5}{1}}{2^{5}} + \frac{\binom{6}{2}}{2^{6}} + \frac{\binom{6}{2}}{2^{6}} + \frac{\binom{5}{2}}{2^{5}} + \frac{\binom{4}{2}}{2^{4}} + \frac{\binom{3}{2}}{2^{3}} + \frac{\binom{2}{2}}{2^{2}} = 2.$$

The Pascal triangle is shown in the following figure.

To prove identity (1), we need:

Lemma 1

Let a, b, $c \in \mathbb{Z}$ with a < b and $c \ge 0$. Then we have

(2)
$$2\sum_{k=a}^{b}\binom{c}{k} = \sum_{k=a+1}^{b}\binom{c+1}{k} + \binom{c}{a} + \binom{c}{b}.$$

Proof: This identity stems immediately from the fact that

 $\binom{c}{k} + \binom{c}{k+1} = \binom{c+1}{k+1}.$

Now we can prove identity (1). This identity is true if n = m = 0. Let us assume that n is different from zero and change the index h to j = n - h. We obtain the following equivalent identity:

(3) $\sum_{i=0}^{m} \frac{\binom{n+i}{i}}{2^{n+i}} + \sum_{j=0}^{n} \frac{\binom{m+j}{m}}{2^{m+j}} = 2,$

which is symmetrical in n and m since $\binom{m+j}{m} = \binom{m+j}{j}$. We can thus assume that $m \leq n$ (and $n \neq 0$).

Let us now write the binomial theorem $(1 + 1)^m = 2^m = \sum_{k=0}^m \binom{m}{k}$ in the following form:

$$2 = \frac{\sum_{k=0}^{m} \binom{m}{k}}{2^{m-1}} = 2 \frac{\sum_{k=0}^{m} \binom{m}{k}}{2^{m}}.$$

Since, for k < 0, $\binom{m}{k} = 0$, the sum may start at $k = m - n \leq 0$:

$$2 = 2 \frac{\sum_{k=m-n}^{m} \binom{m}{k}}{2^{m}}.$$

250

[Aug.

Since m > m - n, applying Lemma 1 to the sum we get:

$$\frac{2\sum_{k=m-n}^{m} \binom{m}{k}}{2^{m}} = \frac{\sum_{k=m-n+1}^{m} \binom{m+1}{k} + \binom{m}{m-n} + \binom{m}{m}}{2^{m}}$$
$$= \frac{2\sum_{k=m-n+1}^{m} \binom{m+1}{k}}{2^{m+1}} + \frac{\binom{m}{m-n} + \binom{m}{m}}{2^{m}}.$$

Again we have m > m - n + 1, and again we can apply Lemma 1. If we proceed in this way, after using the lemma r times we get:

$$\frac{2\sum_{k=m-n+r}^{m}\binom{m+r}{k}}{2^{m+r}}\sum_{j=0}^{r-1} \frac{\binom{m+j}{m+j} + \binom{m+j}{m}}{2^{m+j}}.$$

So we can apply Lemma 1 until m - n + r < m, i.e., until r < n. At this point we get:

$$\frac{2\binom{m+n}{m}}{2^{m+n}} + \sum_{j=0}^{n-1} \frac{\binom{m+j}{m-n+j} + \binom{m+j}{m}}{2^{m+j}}}{2^{m+j}} = \sum_{j=0}^{n} \frac{\binom{m+j}{m-n+j} + \binom{m+j}{m}}{2^{m+j}}}{2^{m+j}}$$
$$= \sum_{s=0}^{n} \frac{\binom{m+s}{m-n+s}}{2^{m+s}} + \sum_{j=0}^{h} \frac{\binom{m+j}{m}}{2^{m+j}}.$$

If we select the index transformation i = s + m - n and observe that, due to the fact that m - n < 0, we can restrict the range of i to nonnegative values, we obtain

$$2 = \sum_{i=0}^{m} \frac{\binom{n+i}{i}}{2^{n+i}} + \sum_{j=0}^{h} \frac{\binom{m+j}{m}}{2^{m+j}},$$

which is what we desired.

1982]