A PROPERTY OF BINOMIAL COEFFICIENTS

(Submitted February 1981)
MAURO BOSCAROL
Libera Università di Trento, I-38050, Povo (Trento), Italy

The purpose of this paper is to prove identity (1), related to the binomial coefficients.

For each pair of integers $n, m \geq 0$, the following identity holds:

$$
\begin{equation*}
\sum_{i=0}^{m} \frac{\binom{n+i}{i}}{2^{n+i}}+\sum_{h=0}^{n} \frac{\binom{n+m-h}{m}}{2^{n+m-h}}=2 \tag{1}
\end{equation*}
$$

The meaning of this identity becomes more clear if one considers Pascal's triangle:

	n													
0														

Let us consider a path which starts from any point on the left side and goes down following a line parallel to the right side, then stops at any point and goes up again, following a line parallel to the left side, until it reaches the right side. If we add all the binomial coefficients we have met, each multiplied by 2^{-n}, the result is always 2. (The binomial coefficient at the turning point of the path being considered twice.) For example, the following path yields

$$
\frac{\binom{4}{0}}{2^{4}}+\frac{\binom{5}{1}}{2^{5}}+\frac{\binom{6}{2}}{2^{6}}+\frac{\binom{6}{2}}{2^{6}}+\frac{\binom{5}{2}}{2^{5}}+\frac{\binom{4}{2}}{2^{4}}+\frac{\binom{3}{2}}{2^{3}}+\frac{\binom{2}{2}}{2^{2}}=2 .
$$

The Pascal triangle is shown in the following figure.

To prove identity (1), we need:

Lemma 1

Let $a, b, c \varepsilon \mathbb{Z}$ with $a<b$ and $c \geq 0$. Then we have

$$
\begin{equation*}
2 \sum_{k=a}^{b}\binom{c}{k}=\sum_{k=a+1}^{b}\binom{c+1}{k}+\binom{c}{a}+\binom{c}{b} \tag{2}
\end{equation*}
$$

Proof: This identity stems immediately from the fact that

$$
\binom{c}{k}+\binom{c}{k+1}=\binom{c+1}{k+1} .
$$

Now we can prove identity (1). This identity is true if $n=m=0$. Let us assume that n is different from zero and change the index h to $j=n-h$. We obtain the following equivalent identity:

$$
\begin{equation*}
\sum_{i=0}^{m} \frac{\binom{n+i}{i}}{2^{n+i}}+\sum_{j=0}^{n} \frac{\binom{m+j}{m}}{2^{m+j}}=2 \tag{3}
\end{equation*}
$$

which is symmetrical in n and m since $\binom{m+j}{m}=\binom{m+j}{j}$. We can thus assume
that $m \leq n($ and $n \neq 0)$.
Let us now write the binomial theorem $(1+1)^{m}=2^{m}=\sum_{k=0}^{m}\binom{m}{k}$ in the fol-
ing form: lowing form:

$$
2=\frac{\sum_{k=0}^{m}\binom{m}{k}}{2^{m-1}}=2 \frac{\sum_{k=0}^{m}\binom{m}{k}}{2^{m}} .
$$

Since, for $k<0,\binom{m}{k}=0$, the sum may start at $k=m-n \leq 0$:

$$
2=2 \frac{\sum_{k=m-n}^{m}\binom{m}{k}}{2^{m}} .
$$

Since $m>m-n$, applying Lemma 1 to the sum we get:

$$
\begin{aligned}
\frac{2 \sum_{k=m-n}^{m}\binom{m}{k}}{2^{m}} & =\frac{\sum_{k=m-n+1}^{m}\binom{m+1}{k}+\binom{m}{m-n}+\binom{m}{m}}{2^{m}} \\
& =\frac{2 \sum_{k=m-n+1}^{m}\binom{m+1}{k}}{2^{m+1}}+\frac{\binom{m}{m-n}+\binom{m}{m}}{2^{m}} .
\end{aligned}
$$

Again we have $m>m-n+1$, and again we can apply Lemma 1 . If we proceed in this way, after using the lemma r times we get:

$$
\frac{2 \sum_{k=m-n+r}^{m}\binom{m+r}{k}}{2^{m+r}} \sum_{j=0}^{r-1} \frac{\binom{m+j}{m+n+j}+\binom{m+j}{m}}{2^{m+j}}
$$

So we can apply Lemma 1 until $m-n+r<m$, i.e., until $r<n$. At this point we get:

$$
\begin{aligned}
\frac{2\binom{m+n}{m}}{2^{m+n}}+\sum_{j=0}^{n-1} \frac{\binom{m+j}{m-n+j}+\binom{m+j}{m}}{2^{m+j}} & =\sum_{j=0}^{n} \frac{\binom{m+j}{m-n+j}+\binom{m+j}{m}}{2^{m+j}} \\
& =\sum_{s=0}^{n} \frac{\binom{m+s}{m-n+s}}{2^{m+s}}+\sum_{j=0}^{n} \frac{\binom{m+j}{m}}{2^{m+j}}
\end{aligned}
$$

If we select the index transformation $i=s+m-n$ and observe that, due to the fact that $m-n<0$, we can restrict the range of i to nonnegative values, we obtain

$$
2=\sum_{i=0}^{m} \frac{\binom{n+i}{i}}{2^{n+i}}+\sum_{j=0}^{n} \frac{\binom{m+j}{m}}{2^{m+j}}
$$

which is what we desired.

