LEXICOGRAPHIC ORDERING AND FIBONACCI REPRESENTATIONS (Submitted June 1980)
V. E. HOGGATT, JR.
(Deceased)
and
MARJORIE BICKNELL-JOHNSON
San Jose State University, San Jose, CA 95192

The Zeckendorf theorem [1], which essentially states that every positive integer can be represented uniquely as a finite sum of distinct Fibonacci numbers 1, 2, 3, 5, ..., 8, where no two consecutive Fibonacci numbers appear, led to so much new work that the entire January 1972 issue of the Fibonacci Quarterly was devoted to representations.

Now, through consideration of the ordering of the terms in a representation and the ordering of the integers, we study mappings of one integer into another by increasing the subscripts of the terms in a representation. We are led to number sequences related to the solutions of Wythoff's game [2], [3], and the generalized Wythoff's game [4]. We investigate representations using Fibonacci numbers, Pell numbers, generalized Fibonacci numbers arising from the Fibonacci polynomials, Lucas numbers, and Tribonacci numbers.

1. The Fibonacci Numbers

If we define the Fibonacci numbers in the usual way,

$$
F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1}, n \geq 1,
$$

then every positive integer N can be written in its Fibonacci-Zeckendorf representation as

$$
\begin{equation*}
N=\alpha_{2} F_{2}+\alpha_{3} F_{3}+\alpha_{4} F_{4}+\cdots+\alpha_{k} F_{k}, \tag{1.1}
\end{equation*}
$$

where $\alpha_{i} \varepsilon\{0,1\}, \alpha_{i} \alpha_{i-1}=0$, or a representation as a sum of distinct Fibonacci numbers where no two consecutive Fibonacci numbers may be used. Such a representation is unique [5] and is also called the first canonical form of N.

If, instead, we write the Fibonacci representation of N in the second canonical form, we replace F_{2} with F_{1}, and

$$
\begin{equation*}
N=\alpha_{1} F_{1}+\alpha_{3} F_{3}+\alpha_{4} F_{4}+\cdots+\alpha_{k} F_{k}, \tag{1.2}
\end{equation*}
$$

where $\alpha_{i} \varepsilon\{0,1\}, \alpha_{2}=0, \alpha_{i} \alpha_{i-1}=0$. Such a representation is also unique.

Notice that, if the smallest Fibonacci number used in the representation has an odd subscript, the two forms are the same, but if the smallest Fibonacci number used has an even subscript, it can be written in either form. For example, the Zeckendorf representation of $8=F_{6}$ becomes $8=F_{5}+F_{3}+F_{1}$, and $11=F_{6}+F_{4}=F_{6}+F_{3}+F_{1}$ 。

We next need some results on the ordering of the terms in a representation. A lexicographic ordering was earlier considered by Silber [7]. We define a lexicographic ordering as follows:

Let positive integers M and N each be represented in terms of a strictly increasing sequence of integers $\left\{a_{n}\right\}$ so that

$$
\begin{equation*}
M=\sum_{i=1}^{k} \alpha_{i} \alpha_{i}, \quad N=\sum_{i=1}^{k^{*}} \beta_{i} \alpha_{i} \tag{1.3}
\end{equation*}
$$

where $\alpha_{i}, \beta_{i} \varepsilon\{0,1, \ldots, p\}$. Let $\alpha_{i}=\beta_{i}$ for all $i>m$. If $\alpha_{m}>\beta_{m}$ only if $M>N$, then we say that the representation is a lexicographic ordering.

Theorem 1.1

The Zeckendorf representation of the positive integers in terms of Fibonacci numbers is a lexicographic ordering.

Proof: Let M and N be the two positive integers given in (1.3), where $a_{n}=F_{n+1}, p=1$, and $\alpha_{i-1} \alpha_{i-1}=0, \beta_{i} \beta_{i-1}=0$. If $\alpha_{i}=\beta_{i}$ for all $i>m$, and if $\alpha_{m}>\beta_{m}$, then $\alpha_{m}=1$ and $\beta_{m}=0$, and we compare the truncated parts of the numbers.

$$
\begin{aligned}
& M^{*}=\alpha_{2} F_{2}+\alpha_{3} F_{3}+\cdots+\alpha_{m-1} F_{m-1}+F_{m} \geq F_{m} \\
& N^{*}=\beta_{2} F_{2}+\beta_{3} F_{3}+\cdots+\beta_{m-1} F_{m-1} \leq F_{m-1}+F_{m-3}+F_{m-5}+\cdots \leq F_{m}-1
\end{aligned}
$$

so that $M^{*}>N^{*}$ and $M>N$, since it is well known that

$$
\begin{aligned}
F_{2 k}+F_{2 k-2}+\cdots+F_{2} & =F_{2 k-1}-1 \\
F_{2 k-1}+F_{2 k-3}+\cdots+F_{3} & =F_{2 k}-1
\end{aligned}
$$

Application: Let f^{*} be the transformation that advances by one the subscripts on each Fibonacci number used in the Zeckendorf representation of the positive integers M and N. If

$$
M \xrightarrow{f^{*}} M^{\prime} \quad \text { and } \quad N \xrightarrow{f^{*}} N^{\prime}
$$

and if $M>N$, then $M^{\prime}>N^{\prime}$.

Theorem 1.2

The Fibonacci representation of integers in the second canonical form is a lexicographic ordering.

The proof of Theorem 1.2 is very similar to that of Theorem 1.1. Next, we let f be the transformation that advances by one the subscripts of the Fibonacci numbers used in the representation in the second canonical form of the positive integers M and N. If

$$
M \xrightarrow{f} M^{\prime} \quad \text { and } \quad N \xrightarrow{f} N^{\prime},
$$

and if $M>N$, then $M^{\prime}>N^{\prime}$.
Let $A=\left\{A_{n}\right\}$ and $B=\left\{B_{n}\right\}$ be the sets of positive integers for which the smallest Fibonacci number used in the Zeckendorf representation occurred respectively with an even or with an odd subscript. Since the Zeckendorf representation is unique, sets A and B cover the set of positive integers and are disjoint.

Notice that, if the smallest subscript for a Fibonacci number used in the Zeckendorf representation for a number is odd, then the first and second canonical forms are the same. Thus, under f or f^{*}, every element of B is mapped into an element of A. But every element of A can be written in either canonical form, and under f every element of A is mapped into an element of A. Thus, every positive integer n is mapped into an element of A, or, aided by the lexicographic ordering theorems,

$$
\begin{gathered}
A_{n} \xrightarrow{f} A_{A_{n}} \\
B_{n} \xrightarrow{f} A_{B_{n}} \\
n \xrightarrow{f} A_{n} \\
A_{n} \xrightarrow{f^{*}} B_{n}
\end{gathered}
$$

so that

$$
\begin{equation*}
A_{A_{n}}+1=B_{n} \tag{1.4}
\end{equation*}
$$

follows, as well as

$$
\begin{equation*}
A_{n}+n=B_{n} \tag{1.5}
\end{equation*}
$$

Compare to the numbers a_{n} and b_{n}, where $\left(a_{n}, b_{n}\right)$ is a safe pair for Wythoff's game [3], [4]. If one uses the Zeckendorf representation of positive integers using the Lucas numbers 2, 1, 3, 4, 7, ..., since the Lucas numbers are complete and have a unique Zeckendorf representation, we could make similar mappings. This is essentially developed in [4] but in a different way. For later comparison, we recall [3], [4], that

$$
\begin{equation*}
A_{n}=[n \alpha] \tag{1.6}
\end{equation*}
$$

where $[x]$ is the greatest integer in x and $\alpha=(1+\sqrt{5}) / 2$ is the positive root of $y^{2}-y-1=0$.

2. The Pell Numbers

Let us go to the Pell sequence $\left\{P_{n}\right\}$, defined by

$$
P_{1}=1, P_{2}=2, P_{n+2}=2 P_{n+1}+P_{n}, n \geq 1
$$

The Pell sequence boasts of a unique Zeckendorf representation [6]. Consider the positive integers and the three sets $A=\left\{A_{n}\right\}, B=\left\{B_{n}\right\}$, and $C=\left\{C_{n}\right\}$, where $A_{n}=B_{n}-1$ and $C_{n}=2 B_{n}+n$, and A, B, and C contain numbers in their natural order of the form

$$
\begin{align*}
& A_{n}=1+\alpha_{2} P_{2}+\alpha_{3} P_{3}+\cdots+\alpha_{k} P_{k}, \\
& B_{n}=\alpha_{2} P_{2}+\alpha_{3} P_{3}+\cdots+\alpha_{k} P_{k}, \alpha_{2} \neq 0, \tag{2.1}\\
& C_{n}=\alpha_{3} P_{3}+\cdots+\alpha_{k} P_{k}, \alpha_{3} \neq 0,
\end{align*}
$$

where $\alpha_{i} \varepsilon\{0,1,2\}$, and if $\alpha_{i}=2$, then $\alpha_{i-1}=0$.
Since we next wish to map the positive integers into set B, we will need a lexicographic ordering theorem for the Pell numbers.

Theorem 2.1

The Zeckendorf representation of the positive integers, in terms of Pell numbers, is a lexicographic ordering.

Proof: Let M and N be two positive integers given by

$$
M=\sum_{i=1}^{k} \alpha_{i} P_{i}, \quad N=\sum_{i=1}^{k} \beta_{i} P_{i},
$$

where $\alpha_{i}, \beta_{i} \varepsilon\{0,1,2\}$ except $\alpha_{1}, \beta_{1} \neq 2$; and if $\alpha_{i}=2$, then $\alpha_{i-1}=0$, or if $\beta_{i}=2$, then $\beta_{i-1}=0$. If $\alpha_{i}=\beta_{i}$ for all $i>m$, and if $\alpha_{m}>\beta_{m}$, then $\alpha_{m}=2$ and $\beta_{m}=1$, or $\alpha_{m}=1$ and $\beta_{m}=0$, or $\alpha_{m}=1$ and $\beta_{m}=0$. We compare the truncated parts of the numbers when $\alpha_{m}=2$ and $\beta_{m}=1$:

$$
\begin{aligned}
& M^{*}=\alpha_{1} P_{1}+\alpha_{2} P_{2}+\cdots+2 P_{m} \geq 2 P_{m} \\
& N^{*}=\beta_{1} P_{1}+\beta_{2} P_{2}+\cdots+P_{m} \leq P_{m}+P_{m}-2<2 P_{m},
\end{aligned}
$$

Since, if $\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{m-1}$ are taken as large as possible, whether m is even or odd,

$$
\begin{aligned}
2\left(P_{2 k-1}+\cdots+P_{3}\right)+P_{1} & =P_{2 k}-1=P_{m}-1, \\
2\left(P_{2 k}+P_{2 k-2}+\cdots+P_{2}\right) & =P_{2 k+1}-1=P_{m}-1,
\end{aligned}
$$

so that $M^{*}>N^{*}$ and $M>N$. If $\alpha_{m}=2$ and $\beta_{m}=0$, then N^{*} is even smaller. If $\alpha_{m}=1$ and $\beta_{m}=0$, then $M^{*}>P_{m}$, but notice that, if the coefficients β_{i} are taken as large as possible, we can only reach $N^{*}=P_{m}-1$, and again $M^{*}>N^{*}$, making $M>N$. By definition (1.3), we have proved Theorem 2.1.

In an entirely similar manner, we could prove Theorem 2.2 , where we write the second canonical form by replacing P_{2} by $2 P_{1}$ and $2 P_{2}$ by $P_{2}+2 P_{1}$ in the Zeckendorf representation, where again if $2 P_{k}$ appears, then P_{k-1} is not used in that representation. This second canonical form is again unique [6]. We write:

Theorem 2.2

The Pell number representation of integers in the second canonical form is a lexicographic ordering.

Let f be the transformation that advances by one the subscripts of each Pell number used in the representation in the second canonical form of the positive integers M and N, and let f^{*} be the transformation that is used for the Zeckendorf form. Then, as before, if

$$
M \xrightarrow{f} M^{\prime} \quad \text { and } \quad N \xrightarrow{f} N^{\prime},
$$

and if $M>N$, then $M^{\prime}>N^{\prime}$, and the same for transformation f^{*}.
Now, we consider A_{n}, B_{n}, and C_{n} of (2.1), and mappings of the integers under f and f^{*}. We must first put B_{n} into the second canonical form. In the representation for B_{n}, replace P_{2} by $2 P_{1}$, or replace $2 P_{2}$ by $P_{2}+2 P_{1}$, since the smallest term of B_{n} is either P_{2} or $2 P_{2}$. Now, under f, B_{n} is mapped into $B_{B_{n}}$, while under f^{*}, B_{n} goes into C_{n}, applying the lexicographic theorems for Pell numbers.

$$
\begin{gathered}
P_{2} \xrightarrow{f^{*}} P_{3}, \text { or } 2 \xrightarrow{f^{*}} 5 ; \\
2 P_{1} \xrightarrow{f} 2 P_{2}, \text { or } 2 \xrightarrow{f} 4 ; \\
2 P_{2} \xrightarrow{f^{*}} 2 P_{3}, \text { or } 4 \xrightarrow{f^{*}} 10 ; \\
P_{2}+2 P_{1} \xrightarrow{f} P_{3}+2 P_{2}, \text { or } 4 \xrightarrow{f} 5+2 \cdot 2=9 .
\end{gathered}
$$

Thus, the image of B_{n} under f is one less than the image of B_{n} under f^{*}, and

$$
\begin{equation*}
B_{B_{n}}+1=C_{n} \tag{2.2}
\end{equation*}
$$

We know where the A_{n} 's go under f : into B_{n}, since the A_{n} 's start with a one, while their images start with a P_{2}. The B_{n}^{\prime} 's (second form) have $2 P_{1}$, so their images start with $2 P_{2}$, clearly a B_{n}. Now, where do the C_{n} 's go? Each C_{n} begins with 5 or 10. Replace $2 P_{3}=10$ by $5+2 \cdot 2+1=P_{3}+2 P_{2}+P_{1}$, and replace $1 P_{3}=5$ by $2 P_{2}+P_{1}=2 \cdot 2+1$ and under f,

$$
10 \rightarrow P_{4}+2 P_{3}+P_{2}=12+2 \cdot 5+2=24
$$

and

$$
5 \rightarrow 2 P_{3}+P_{2}=2 \cdot 5+2=12
$$

Thus A_{n}, modified B_{n}, and modified C_{n} are all carried into B_{n} by f and

$$
B_{n} \xrightarrow{f^{*}} C_{n}
$$

For later comparison, we note that

$$
\begin{equation*}
B_{n}=[n(1+\sqrt{2})] \tag{2.3}
\end{equation*}
$$

where $[x]$ is the greatest integer in x, and $(1+\sqrt{2})$ is the positive root of $y^{2}-2 y-1=0$.

3. Generalized Fibonacci Numbers (Arising from Fibonacci Polynomials)

Next, consider the sequence of generalized Fibonacci numbers $\left\{u_{n}\right\}$,

$$
u_{0}=0, u_{1}=1, \text { and } u_{n+1}=k u_{n}+u_{n-1}, n \geq 1
$$

[Note that, if the Fibonacci polynomials are given by $f_{0}(x)=0, f_{1}(x)=1$, and $f_{n+1}(x)=x f_{n}(x)+f_{n-1}(x), n \geq 1$, then $u_{n}=f_{n}(k)$.] Let set B be the set of positive integers whose Zeckendorf representation has the smallest u_{n} used with an even subscript, and set 0 the set of integers whose Zeckendorf representation has the smallest u_{n} used with an odd subscript. We know from [6] that N has a unique representation of the form

$$
\begin{equation*}
N=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\cdots+\alpha_{m} u_{m} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha_{1} \varepsilon\{0,1, \ldots, k-1\}, \\
& \alpha_{i} \varepsilon\{0,1,2, \ldots, k\}, i>1, \\
& \alpha_{i}=k \Longrightarrow \alpha_{i-1}=0,
\end{aligned}
$$

so that sets B and 0 cover the positive integers without overlapping.
We wish to demonstrate a second canonical form for elements of set B. We do this in two parts: Let $\alpha_{2 k}$ be the coefficient of the least $u_{2 k}$ used; then $\alpha_{2 k}=1,2,3, \ldots, k$. Take $1 u_{2 k}$ and replace it by $k u_{2 k-1}+u_{2 k-2}$, and continue until you obtain $1 u_{2}$, and replace that by $k u_{1}$,

$$
u_{2 k}=k\left(u_{2 k-1}+u_{2 k-3}+\cdots+u_{3}+u_{1}\right) .
$$

Thus,

$$
B_{n}=R+k u_{2 k-1}+k u_{2 k-3}+\cdots+k u_{3}+k u_{1} .
$$

If f is again the transformation that increases the subscripts by one for integers written in the second canonical form, and f^{*} the transformation for the Zeckendorf form, then, if we can again use lexicographic ordering,

$$
\begin{aligned}
& B_{n} \xrightarrow{f} R^{\prime}+k u_{2 k}+k u_{2 k-2}+\cdots+k u_{2} \\
& B_{n} \xrightarrow{f^{*}} R^{\prime}+u_{2 k+1},
\end{aligned}
$$

but from [6],

$$
u_{2 k+1}-1=k\left(u_{2 k}+u_{2 k-2}+\cdots+u_{4}+u_{2}\right),
$$

so that the images differ by 1. Now, under f, we see that all of the elements of 0 are mapped into set B and set B in second canonical form is also mapped into set B. Thus, provided we have lexicographic ordering, the positive integers n map into B_{n} under f. If we split set 0 into sets A whose elements use $l u_{1}$ in their representations and $C=\left\{C_{n}\right\}$, where C_{n} does not use $1 u_{1}$ in its representation, then

$$
B_{n} \xrightarrow{f^{*}} C_{n}, \quad \text { and } \quad B_{n} \xrightarrow{f} B_{B_{n}},
$$

and since the images differ by 1 ,

$$
\begin{equation*}
B_{B_{n}}+1=C_{n}, n>0 \tag{3.2}
\end{equation*}
$$

The general lexicographic theorm should not be difficult.

Theorem 3.1

The Zeckendorf representation of the positive integers in terms of the generalized Fibonacci numbers $\left\{u_{n}\right\}$ is a lexicographic ordering.

Proof: Let M and N be positive integers which have Zeckendorf representations

$$
M=\sum_{j=1}^{n} M_{j} u_{j} \quad \text { and } \quad N=\sum_{j=1}^{n} N_{j} u_{j}
$$

Compare the higher-ordered terms from highest to lowest. If $M_{j}=N_{j}$ for all $j>m$, and $M_{m}>N_{m}$, then we prove that $M>N$. It suffices to let $M=M_{m} u_{m}$ and $M_{m} \geq N_{m}+1$.

$$
N \leq N^{*}=k u_{2 j-1}+k u_{2 j-3}+k u_{2 j-5}+\cdots+k u_{3}+(k-1) u_{1}=u_{2 j}-1
$$

or

$$
N \leq N^{*}=k u_{2 j}+k u_{2 j-2}+\cdots+k u_{2}=u_{2 j+1}-1
$$

Thus $M \geq M^{*}>N^{*} \geq N$, so that $M>N$, proving Theorem 3.1.
This shows that, if two numbers M and N in Zeckendorf form are compared, then the one with the larger coefficient in the first place that they differ, coming down from the higher side, is larger. Now, what need be said about the second canonical form? If both M and N are in the second canonical form, and they differ in the j th place, whereas their smallest nonzero coefficient occurs in a position smaller than the j th place, then the original test suffices. If they both differ in the smallest position, then again the one with the larger coefficient there is larger, as their second canonical extensions are identical.

Theorem 3.2

The representation of positive integers in the second canonical form using generalized Fibonacci numbers $\left\{u_{n}\right\}$ is a lexicographic ordering.

Under transformation f, using the second canonical form, if $M=N+1$, then

$$
M \xrightarrow{f} M^{\prime}, \quad \text { and } \quad N \xrightarrow{f} N^{\prime},
$$

such that $M^{\prime}>N^{\prime}+k-1$. For example,

$$
u_{1}=1 \xrightarrow{f} u_{2}=k, 2=2 u_{1} \xrightarrow{f} 2 u_{2}=2 k, \text { and } 2 k>k+k-1,
$$

taking $M=2$ and $N=1$.
We now return to sets A and C which made up set 0 and with set B covered the positive integers. Sets A, B, and C can be characterized as the positive integers written, in natural order, in the form

$$
\begin{aligned}
A_{n} & =\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{3} u_{3}+\cdots+\alpha_{m} u_{m}, \alpha_{1} \neq 0, k \\
\text { (3.3) } B_{n} & =\alpha_{2} u_{2}+\alpha_{3} u_{3}+\cdots+\alpha_{m} u_{m}, \alpha_{2} \neq 0 \\
C_{n} & =\alpha_{3} u_{3}+\alpha_{4} u_{4}+\cdots+\alpha_{m} u_{m}, \alpha_{3} \neq 0, \alpha_{i} \varepsilon\{0,1,2,3, \ldots, k\}
\end{aligned}
$$

For the numbers B_{n}, we can write:

Theorem 3.3

$B_{B_{n}+1}-B_{B_{n}}=k+1$, and if $m \neq B_{n}$,

$$
B_{m+1}-B_{m}=k .
$$

Also, it was proved by Molly Olds [18] that

Theorem 3.4

$$
C_{n}=k B_{n}+n
$$

4. The Tribonacci Numbers

The Tribonacci numbers $\left\{T_{n}\right\}$ are

$$
T_{0}=0, T_{1}=1, T_{2}=1, T_{n+3}=T_{n+2}+T_{n+1}+T_{n}, n \geq 0
$$

The Tribonacci numbers are complete with respect to the positive integers, and the positive integers again have a unique Zeckendorf representation in terms of Tribonacci numbers (see [8]). That is, a positive integer N has a unique representation in the form

$$
\begin{equation*}
N=\alpha_{2} T_{2}+\alpha_{3} T_{3}+\cdots+\alpha_{k} T_{k}, \tag{4.1}
\end{equation*}
$$

where $\alpha_{i} \varepsilon\{0,1\}, \alpha_{i} \alpha_{i-1} \alpha_{i-2}=0$.
Now, consider the numbers A_{n}, B_{n}, and C_{n} listed in Table 4.1. Here, because we want completeness in the array, we take A_{n} as the smallest positive integer not yet used, and we define Δ_{n} as the number of C_{k} 's less than A_{n},
and φ_{n} as the number of C_{k} 's less than B_{n}. Then, we compute B_{n} and C_{n} as
$B_{n}=2 A_{n}-\Delta_{n}$,
(4.3)
$C_{n}=2 B_{n}-\varphi_{n}$.
We write the Tribonacci recurrence relation:

$$
\begin{equation*}
n+A_{n}+B_{n}=C_{n} . \tag{4.4}
\end{equation*}
$$

TABLE 4.1

n	A_{n}	B_{n}	C_{n}
1	1	2	4
2	3	6	11
3	5	9	17
4	7	13	24
5	8	15	28
6	10	19	35
7	12	22	41
8	14	26	48
9	16	30	55
10	18	33	61

Now, $A=\left\{A_{n}\right\}$ is the set of positive integers whose Zeckendorf representation has smallest term T_{k}, where $k \equiv 2 \bmod 3 ; B=\left\{B_{n}\right\}$ contains those positive integers using smallest term T_{k}, where $k \equiv 3 \bmod 3$; and $C=\left\{C_{n}\right\}$ has smallest term T_{k}, where $k \equiv 1 \bmod 3, k>3$. We have suppressed $T_{1}=1$ in the above; thus, every positive integer belongs to A, B, or C by completeness, where A, B, and C are disjoint.

We write a second canonical form by rewriting each A_{n} by replacing T_{2} by T_{1}; replacing $T_{3}=2$ in each B_{n} by $T_{2}+T_{1}$; and leaving the numbers C_{n} alone.

Note that, instead of saying " A_{n} has smallest term $T_{3 m+2}$," we could say " A_{n} has $3 m+1$ leading zeros."

Theorem 4.1

Each A_{n} has $k \equiv 1 \bmod 3$ leading zeros in the Zeckendorf representation and can be written so that

$$
A_{n}=T_{2}+\alpha_{3} T_{3}+\alpha_{4} T_{4}+\cdots+\alpha_{r} T_{r}, \text { where } \alpha_{i} \varepsilon\{0,1\}
$$

Each B_{n} has $k \equiv 2 \bmod 3$ leading zeros and can be written as

$$
B_{n}=T_{3}+\alpha_{4} T_{4}+\cdots+\alpha_{r} T_{r}, \text { where } \alpha_{i} \varepsilon\{0,1\}
$$

Each C_{n} has $k \equiv 0 \bmod 3$ leading zeros, $k \geq 3$, and can also be written

$$
C_{n}=T_{4}+\alpha_{5} T_{5}+\cdots+\alpha_{r} T_{r}, \text { where } \alpha_{i} \varepsilon\{0,1\}
$$

Proof: Let $T_{3 m+2}$ have a nonzero coefficient. Replace $T_{3 m+2}$ by

$$
T_{3 m+1}+T_{3 m}+T_{3 m-1}=T_{3 m+1}+T_{3 m}+T_{3(m-1)+2} .
$$

Continue until the right member ultimately lands in slot 2 . The similar replacement for $T_{3 m}$ in B_{n} and $T_{3 m+1}$ in C_{n} will establish the forms given above.

Theorem 4.2
The Zeckendorf representation of the positive integers in terms of the Tribonacci numbers $\left\{T_{n}\right\}$ is a lexicographic ordering. The representation in the second canonical form is also a lexicographic ordering.

Proof: Write M and N in their Zeckendorf representations,

$$
M=\sum_{j=2}^{n} M_{j} T_{j} \quad \text { and } \quad N=\sum_{j=2}^{n} N_{j} T_{j} .
$$

If $M_{j}=N_{j}$ for all $j>m$ and $M_{m}>N_{m}$, then $M_{m}=1$ and $N_{m}=0$, and we prove that $M>N$. We let M^{*} and N^{*} be the truncated parts of the numbers M and N. Then

$$
\begin{aligned}
& M^{*}=M_{2} T_{2}+M_{3} T_{3}+\cdots+M_{m} T_{m} \geq T_{m}, \\
& N^{*}=N_{2} T_{2}+N_{3} T_{3}+\cdots+N_{m-1} T_{m-1} .
\end{aligned}
$$

Since $N_{i} N_{i-1} N_{i-2}=0$, N^{*} is as large as possible when both N_{m-1} and N_{m-2} are nonzero. Either $m=3 k$ or $m=3 k+1$ or $m=3 k-1$. We use three summation formulas given by Waddi11 and Sacks [9].

If $m=3 k$, then

$$
N^{*} \leq \sum_{i=1}^{k}\left(T_{3 i-1}+T_{3 i-2}\right)-T_{1}=T_{3 k}-1<T_{m} \leq M^{*}
$$

If $m=3 k+1$,

$$
N^{*} \leq \sum_{i=1}^{k}\left(T_{3 i}+T_{3 i-1}\right)=T_{3 k+1}-1<T_{m} \leq M^{*} .
$$

If $m=3 k-1$,

$$
N^{*} \leq \sum_{i=1}^{k}\left(T_{3 i-2}+T_{3 i-3}\right)-T_{1}=T_{3 k-1}-1<T_{m} \leq M^{*}
$$

Thus in all three cases, $M^{*}>N^{*}$ so that $M>N$, and the Zeckendorf representation is a lexicographic ordering. The same summation identities would show that the second canonical form is also lexicographic.

Next, let f be the transformation that increases the subscripts by one for integers written in the second canonical form, and f^{*} the similar transformation for the Zeckendorf form. Now, the numbers in set A are ordered, and since we have lexicographic ordering for the second canonical form,

$$
n \xrightarrow{f} A_{n}, A_{n} \xrightarrow{f} A_{A_{n}}, B_{n} \xrightarrow{f} A_{B_{n}}, C_{n} \xrightarrow{f} A_{C_{n}} .
$$

Since we have lexicographic ordering for the Zeckendorf form,

$$
A_{n} \xrightarrow{f^{*}} B_{n}, B_{n} \xrightarrow{f^{*}} C_{n}, C_{n} \xrightarrow{f^{*}} A_{C_{n}} .
$$

But each $A_{A_{n}}$ is one less than B_{n}, and each $A_{B_{n}}$ is one less than C_{n}, so that

$$
\begin{equation*}
A_{A_{n}}+1=B_{n}, \quad \text { and } \quad A_{B_{n}}+1=C_{n} \tag{4.5}
\end{equation*}
$$

(4.5) reminds one of $a_{a_{n}}+1=b_{n}$ from Wythoff's game [3], [4]. Note that $\left\{C_{n}\right\}$ clearly maps into $\left\{A_{n}\right\}$ because they were of the form whose least term had subscript $k \equiv 2 \bmod 3$, so that an upward shift of one yields $k \equiv 3 \bmod 3$ and, hence, $A_{C_{n}}$.

Comments: Under f, A_{n} maps to $A_{A_{n}}$, and under f^{*}, A_{n} maps to B_{n}. If A_{n} is in second canonical form, then $A_{n}+1=A_{n}+T_{2}$ is also in second canonical form. Thus, using the Zeckendorf and then the second form for A_{n},

$$
\begin{aligned}
& A_{n}+T_{1} \xrightarrow{f^{*}} B_{n}+T_{2}=B_{n}+1, \\
& A_{n}+T_{2} \xrightarrow{f} A_{A_{n}}+T_{3}=A_{A_{n}}+2,
\end{aligned}
$$

so that $A_{A_{n}}+1=B_{n}$. Clearly $B_{n}+1$ is an A_{j} since the B_{n} 's have T_{3} as the lowest nonzero Tribonacci number, but $B_{n}+1$ has T_{2}. Thus,

$$
\begin{equation*}
A_{A_{n}}+1=B_{n} \quad \text { and } \quad B_{n}+1=A_{A_{n}+1} \tag{4.6}
\end{equation*}
$$

so that

$$
A_{A_{n}+1}-A_{A_{n}}=2
$$

We also have shown that there are A_{n} of the A_{j} 's less than B_{n}.
Under f, B_{n} maps to $A_{B_{n}}$, and under f^{*}, B_{n} maps to C_{n}. Therefore,

$$
A_{B_{n}}+1=C_{n},
$$

which shows that there are B_{n} of the A_{j} 's less than C_{n}. A1so, $C_{n}+1$ is an A_{j} since each C_{n} can be written with the least summand T_{4}. Therefore,

$$
C_{n}+1=A_{B_{n}+1},
$$

and

$$
\begin{equation*}
A_{B_{n}}+1=C_{n} \quad \text { and } \quad C_{n}+1=A_{B_{n}+1} \tag{4.7}
\end{equation*}
$$

give us

$$
A_{B_{n}+1}-A_{B_{n}}=2
$$

Next, we look at C_{n} and $C_{n}+1$.

$$
C_{n} \xrightarrow{f} A_{C_{n}} \quad \text { and } \quad C_{n}+1=C_{n}+T_{1} \xrightarrow{f} A_{C_{n}+1}=A_{C_{n}}+1
$$

Since $C_{n}+1$ is $A_{B_{n}+1}$, the one is T_{1} in $C_{n}+1$. We conclude that

$$
A_{C_{n}+1}-A_{C_{n}}=1
$$

This gives all the recurrent differences for the A sequence.
We now turn to the B sequence.

$$
\begin{aligned}
1 & =\left(A_{C_{n}+1}-A_{C_{n}}\right) \xrightarrow{f^{*}}\left(B_{C_{n}+1}-B_{C_{n}}\right)=2, \\
2 & =\left(A_{A_{n}+1}-A_{A_{n}}\right) \xrightarrow{\mathrm{s}^{*}}\left(B_{A_{n}+1}-B_{A_{n}}\right)=4, \\
1+1=2 & =\left(A_{B_{n}+1}-A_{B_{n}}\right) \xrightarrow{f^{*}}\left(B_{B_{n}+1}-B_{B_{n}}\right)=1+2=3 .
\end{aligned}
$$

We look first at

$$
C_{n} \xrightarrow{f} A_{C_{n}} \quad \text { and } \quad C_{n}+1 \xrightarrow{f} A_{C_{n}+1}
$$

because $C_{n}+1$ is an A_{j} so 1 in it is T_{1}. Thus
and

$$
A_{C_{n}+1}=A_{C_{n}}+T_{2} \xrightarrow{f^{*}} B_{C_{n}+1}=B_{C_{n}}+T_{3}=B_{C_{n}}+2
$$

$$
B_{C_{n}+1}-B_{C_{n}}=2
$$

Now, in second canonical form, A_{n} has T_{1} but no T_{2}, but $A_{n}+1$ has T_{1} and T_{2}, or, $A_{n}+1=A_{n}+T_{2}$.

$$
\begin{gathered}
A_{n} \xrightarrow{f} A_{A_{n}} \xrightarrow{f^{*}} B_{A_{n}} \\
A_{n}+1=A_{n}+T_{2} \xrightarrow{f} A_{A_{n}}+T_{3} \xrightarrow{f^{*}} B_{A_{n}}+T_{4}=B_{A_{n}}+4, \\
A_{n}+1 \xrightarrow{f} A_{A_{n}+1} \xrightarrow{f^{*}} B_{A_{n}+1}=B_{A_{n}}+4 .
\end{gathered}
$$

Thus,

$$
B_{A_{n}+1}-B_{A_{n}}=4
$$

Next, let $B_{n}=R_{n}+T_{3}=R_{n}+T_{2}+T_{1}$ be in second canonical form.

$$
\begin{gathered}
B_{n} \xrightarrow{f} A_{B_{n}}=R_{n}^{\prime}+T_{3}+T_{2} \xrightarrow{f^{*}} R_{n}^{\prime \prime}+T_{4}+T_{3}, \\
B_{n}+1=R_{n}+T_{3}+T_{1} \xrightarrow{f} R_{n}^{\prime}+T_{4}+T_{2} \xrightarrow{f^{*}} R_{n}^{\prime \prime}+T_{5}+T_{3}, \\
B_{n}+1 \xrightarrow{s} A_{B_{n}+1} \xrightarrow{f^{*}} B_{B_{n}+1}=R_{n}^{\prime \prime}+T_{5}+T_{3} .
\end{gathered}
$$

Therefore,

$$
B_{B_{n}+1}-B_{B_{n}}=\left(R_{n}^{\prime \prime}+T_{5}+T_{3}\right)-\left(R_{n}^{\prime \prime}+T_{4}+T_{3}\right)=T_{5}-T_{4}=3
$$

Finally, for the third difference of B numbers,

$$
\begin{gathered}
C_{n} \xrightarrow{f} A_{C_{n}} \xrightarrow{f^{*}} B_{C_{n}}, \\
C_{n}+1=C_{n}+T_{1} \xrightarrow{f} A_{C_{n}}+T_{2} \xrightarrow{f^{*}} B_{C_{n}}+T_{3}, \\
C_{n}+1 \xrightarrow{f} A_{C_{n}+1} \xrightarrow{f^{*}} B_{C_{n}+1} .
\end{gathered}
$$

Therefore,

$$
B_{C_{n}+1}-B_{C_{n}}=T_{3}=2
$$

Lastly, the three differences of consecutive C_{j} 's are found by using the above differences of $A_{j} ' s$ and B_{j} 's and (4.4).

$$
\begin{aligned}
C_{A_{n}+1}-C_{A_{n}} & =\left(A_{n}+1+A_{A_{n}+1}+B_{A_{n}+1}\right)-\left(A_{n}+A_{A_{n}}+B_{A_{n}}\right) \\
& =\left(A_{n}+1-A_{n}\right)+\left(A_{A_{n}+1}-A_{A_{n}}\right)+\left(B_{A_{n}+1}-B_{A_{n}}\right) \\
& =1+2+4=7 . \\
C_{B_{n}+1}-C_{B_{n}} & =\left(B_{n}+1-B_{n}\right)+\left(A_{B_{n}+1}-A_{B_{n}}\right)+\left(B_{B_{n}+1}-B_{B_{n}}\right) \\
& =1+2+3=6 . \\
C_{C_{n}+1}-C_{C_{n}} & =\left(C_{n}+1-C_{n}\right)+\left(A_{C_{n}+1}-A_{C_{n}}\right)+\left(B_{C_{n}+1}-B_{C_{n}}\right) \\
& =1+1+2=4 .
\end{aligned}
$$

We summarize all the possible differences of successive members of the A, B, and C sequences as:

Theorem 4.3

$$
\begin{aligned}
& A_{A_{n}+1}-A_{A_{n}}=2, A_{B_{n}+1}-A_{B_{n}}=2, A_{C_{n}+1}-A_{C_{n}}=1 \\
& B_{A_{n}+1}-B_{A_{n}}=4, B_{B_{n}+1}-B_{B_{n}}=3, B_{C_{n}+1}-B_{C_{n}}=2 \\
& C_{A_{n}+1}-C_{A_{n}}=7, C_{B_{n}+1}-C_{B_{n}}=6, C_{C_{n}+1}-C_{C_{n}}=4
\end{aligned}
$$

Returning to (4.6), we know that there are A_{n} of the A_{j} 's less than B_{n}. Then, B_{n} is n plus the number of A_{j} 's less than B_{n}, plus the number of C_{k} 's less than B_{n}, or,

$$
B_{n}=n+A_{n}+\varphi_{n}
$$

Then

$$
C_{n}=2 B_{n}-\varphi_{n}=2 B_{n}-\left(B_{n}-n-A_{n}\right)=B_{n}+A_{n}+n,
$$

a consistency proof that the C_{n} 's are properly defined by the array of Table 4.1.

Theorem 4.4

The number of C_{j} 's less than A_{n} is

$$
\Delta_{n}=2 A_{n}-B_{n}
$$

Proof: We show that $2 A_{n}-B_{n}$ increments by 1 if and only if $n=B_{m}$, and zero otherwise, applying Theorem 4.3:

$$
\begin{aligned}
& 2\left(A_{A_{n}+1}-A_{A_{n}}\right)-\left(B_{A_{n}+1}-B_{A_{n}}\right)=2(2)-4=0 \\
& 2\left(A_{B_{n}+1}-A_{B_{n}}\right)-\left(B_{B_{n}+1}-B_{B_{n}}\right)=2(2)-3=1 \\
& 2\left(A_{C_{n}+1}-A_{C_{n}}\right)-\left(B_{C_{n}+1}-B_{C_{n}}\right)=2(1)-2=0
\end{aligned}
$$

Note well that $\left\{A_{n}\right\},\left\{B_{n}\right\}$, and $\left\{C_{n}\right\}$ are sets whose disjoint union is the set of positive integers. From (4.7), we see that

$$
\begin{gathered}
A_{B_{n}}+1=C_{n}=A_{B_{n}+1}-1 \\
A_{B_{n}}<C_{n}<A_{B_{n}+1}
\end{gathered}
$$

From $A_{C_{n}+1}-A_{C_{n}}=1$, there are no C_{j} 's between those two A_{k} 's. From (4.6), we see that

$$
\begin{gathered}
A_{A_{n}}+1=B_{n}=A_{c}-1 \\
A_{A_{n}}<B_{n}<A_{A_{n}+1}
\end{gathered}
$$

Thus, $2 A_{n}-B_{n}$ counts the number of C_{j} 's less than A_{n}.
Theorem 4.4 shows that B_{n} is properly defined in the array of Table 4.1 . We know from earlier work that $\left(B_{n}-A_{n}-n\right)$ counts the number of C_{j} 's less than B_{n} and agrees with the definition of C_{n} in the array. Since each B_{n} and C_{n} is followed by some A_{k}, the choice of A_{n} as the first positive integer not yet used guarantees that the sets in the array cover the positive integers.

Nota bene: If $\left(2 A_{n}-B_{n}\right)$ counts the number of C_{j} 's less than A_{n}, it also counts the number of B_{j}^{\prime} 's less than n. Further, ($B_{n}-A_{n}-n$) counts the number of C_{j}^{\prime} 's less than B_{n}; it also counts the number of B_{j} 's less than A_{n}, and the number of A_{j} 's less than n. These follow immediately from the lexicographic ordering by moving backward. Summarizing:

Theorem 4.5

(a) $\left(2 n-1-A_{n}\right)$ counts the number of C_{j} 's less than n;
(b) $\left(2 A_{n}-B_{n}\right)$ counts the number of B_{j} 's less than n;
(c) $\left(B_{n}-A_{n}-n\right)$ counts the number of A_{j} 's less than n.

Next, we make application of a theorem of Moser and Lamdek [11];

Theorem (Leo Moser and J. Lamdek, 1954)

Let $f(n)$ be a nondecreasing function of nonnegative integers defined on the positive integers,

$$
\begin{equation*}
F(n)=f(n)+n, \quad G(n)=f^{*}(n)+n \tag{A}
\end{equation*}
$$

where $f^{*}(n)$ is the number of positive integers x satisfying $0 \leq f(x)<n$. Then, $F(n)$ and $G(n)$ are complementary sequences. Conversely, every two increasing complementary sequences $F(n)$ and $G(n)$ decompose into form (A), with $f(n)$ nondecreasing.

Let $f^{*}(n)=B_{n}-A_{n}-n$; then

$$
G(n)=B_{n}-A_{n} \quad \text { and } \quad F(n)=A_{n}+n=C_{n}-B_{n},
$$

since $C_{n}=B_{n}+A_{n}+n$. Thus, $\left(B_{n}-A_{n}\right)$ and $\left(C_{n}-B_{n}\right)$ are complementary sequences.

Let $f^{*}(n)=2 A_{n}-B_{n}$; then

$$
G(n)=2 A_{n}-B_{n}+n=C_{n}-2 B_{n}+A_{n}=\left(C_{n}-B_{n}\right)-\left(B_{n}-A_{n}\right)
$$

and

$$
F(n)=B_{n}+n=C_{n}-A_{n}=\left(C_{n}-B_{n}\right)+\left(B_{n}-A_{n}\right) .
$$

Thus, $G(n)=\left(C_{n}-B_{n}\right)-\left(B_{n}-A_{n}\right)$ and $F(n)=\left(C_{n}-B_{n}\right)+\left(B_{n}-A_{n}\right)$ are complementary sets.

Let $f^{*}(n)=2 n-1-A_{n}$; then

$$
G(n)=3 n-1-A_{n} \quad \text { and } \quad F(n)=C_{n}+n
$$

Thus, $F(n)$ and $G(n)$ are complementary sets. We have just proved:

Theorem 4.6

The three sequences $\left\{A_{n}\right\},\left\{B_{n}\right\}$, and $\left\{C_{n}\right\}$ are such that their disjoint union is the set of positive integers. That is, they form a triple of complementary sequences. Further, their differences $\left(B_{n}-A_{n}\right)$ and ($C_{n}-B_{n}$) form a pair of complementary sequences, and the sum and differences of this pair of complementary sequences form another pair of complementary sequences:

$$
\left(C_{n}-A_{n}\right) \quad \text { and } \quad\left(C_{n}-2 B_{n}+A_{n}=2 A_{n}-B_{n}+n\right)
$$

5. The r-nacci Numbers

The r-nacci numbers $\left\{R_{n}\right\}$ are given by [14]

$$
R_{0}=0, R_{1}=1, R_{j}=2^{j-2}, j=2,3, \ldots, r+1
$$

and

$$
\begin{equation*}
R_{n+r}=R_{n+r-1}+R_{n+x-2}+\cdots+R_{n} \tag{5.1}
\end{equation*}
$$

The Fibonacci numbers $\left\{F_{n}\right\}$ are the case $r=2$, while the Tribonacci numbers $\left\{T_{n}\right\}$ have $r=3$, and the Quadranacci numbers $\left\{Q_{n}\right\}$ have $r=4$.

We have the sequence of identities

$$
\begin{aligned}
& \text { (5.2) } r=2: \\
& F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}=F_{2 n+1}-1, \\
& F_{3}+F_{5}+F_{7}+\cdots+F_{2 n+1}=F_{2 n+2}-1 . \\
& \left(T_{2}+T_{3}\right)+\left(T_{5}+T_{6}\right)+\cdots+\left(T_{3 n-1}+T_{3 n}\right)=T_{3 n+1}-1, \\
& \text { (5.3) } r=3: \\
& \left(T_{3}+T_{4}\right)+\left(T_{6}+T_{7}\right)+\cdots+\left(T_{3 n}+T_{3 n+1}\right)=T_{3 n+2}-1, \\
& T_{2}+\left(T_{4}+T_{5}\right)+\left(T_{7}+T_{8}\right)+\cdots+\left(T_{3 n+1}+T_{3 n+2}\right)=T_{3 n+3}-1 . \\
& \left(Q_{2}+Q_{3}+Q_{4}\right)+\left(Q_{6}+Q_{7}+Q_{8}\right)+\cdots \\
& +\left(Q_{4 n-2}+Q_{4 n-1}+Q_{4 n}\right)=Q_{4 n+1}-1, \\
& \left(Q_{3}+Q_{4}+Q_{5}\right)+\left(Q_{7}+Q_{8}+Q_{9}\right)+\cdots \\
& +\left(Q_{4 n-1}+Q_{4 n}+Q_{4 n+1}\right)=Q_{4 n+2}-1, \\
& \text { (5.4) } r=4 \text { : } \\
& Q_{2}+\left(Q_{4}+Q_{5}+Q_{6}\right)+\left(Q_{8}+Q_{9}+Q_{10}\right)+\cdots \\
& +\left(Q_{4 n}+Q_{4 n+1}+Q_{4 n+2}\right)=Q_{4 n+3}-1, \\
& Q_{2}+Q_{3}+\left(Q_{5}+Q_{6}+Q_{7}\right)+\left(Q_{9}+Q_{10}+Q_{11}\right)+\cdots \\
& +\left(Q_{4 n+1}+Q_{4 n+2}+Q_{4 n+3}\right)=Q_{4 n+4}-1 .
\end{aligned}
$$

Note that R_{1} is never used on the left. Generalizing to the r-nacci numbers, we make groups of ($r-1$) terms, writing r equations:

$$
\begin{align*}
\left(R_{2}+R_{3}+\cdots+R_{r}\right)+\left(R_{r+2}+\right. & \left.+\cdots+R_{2 r}\right)+\cdots \\
& +\left(R_{(k-1) r+2}+\cdots+R_{k r}\right)=R_{k r+1}-1, \\
\left(R_{3}+R_{4}+\cdots+R_{r+1}\right)+\left(R_{r+3}\right. & \left.+\cdots+R_{2 r+1}\right)+\cdots \\
& +\left(R_{(k-1) r+3}+\cdots+R_{k r+1}\right)=R_{k r+2}-1, \\
R_{2}+\left(R_{4}+\cdots+R_{r+2}\right)+\left(R_{r+4}\right. & \left.+\cdots+R_{2 r+2}\right)+\cdots \tag{5.5}\\
& +\left(R_{(k-1) r+4}+\cdots+R_{k r+2}\right)=R_{k r+3}-1, \\
R_{2}+R_{3}+\left(R_{5}+\cdots+R_{r+3}\right)+ & \left(R_{r+5}+\cdots+R_{2 r+3}\right)+\cdots \\
& +\left(R_{(k-1) r+5}+\cdots+R_{k r+3}\right)=R_{k r+4}-1,
\end{align*}
$$

(5.5) -continued

$$
\begin{aligned}
R_{2}+R_{3}+\cdots+R_{r-1}+\left(R_{r+1}+\right. & \left.\cdots+R_{2 r}\right)+\left(R_{2 r+2}+\cdots+R_{3 r+2}\right)+\cdots \\
& +\left(R_{k r+1}+\cdots+R_{k r+(r-1)}\right)=R_{k r+r}-1
\end{aligned}
$$

Notice that the proof of Eqs. (5.5) is very simple. In any of the equations, add $1=R_{1}$ to the left, and observe that

$$
R_{1}+R_{2}+R_{3}+\cdots+R_{i}=R_{i+1} \text { for } i=1,2, \ldots, r-1
$$

and that R_{i+1} can be added to the next group of ($r-1$) consecutive terms to get R_{i+r+1}, which can be added to the next group of ($r-1$) consecutive terms. Repeat until reaching $R_{k r+i}$.

The r-nacci numbers, which are the generalized Fibonacci polynomials of [13] evaluated at $x=k=1$, again give a unique Zeckendorf representation for each positive integer N,

$$
\begin{equation*}
N=\alpha_{2} R_{2}+\alpha_{3} R_{3}+\cdots+\alpha_{k} R_{k} \tag{5.6}
\end{equation*}
$$

where $\alpha_{i} \in\{0,1\}$, and $\alpha_{i} \alpha_{i-1} \alpha_{i-2} \ldots \alpha_{i-r+1}=0$.
Now let $A_{i}=\left\{a_{i, n}\right\}$ be the set of positive integers whose unique Zeckendorf representation has smallest term $R_{k}, k \geq 2$ (we have suppressed R_{1}), where $k \equiv i \bmod r, i=2,3, \ldots, r+1$. Thus, every positive integer belongs to one of the sets A_{i} by completeness, where the sets A_{i} are disjoint.

Theorem 5.1

Each $a_{i, n}$ can be written so that

$$
a_{i, n}=R_{i}+\alpha_{i+1} R_{i+1}+\alpha_{i+2} R_{i+2}+\cdots+\alpha_{p} R_{p},
$$

where $\alpha_{i} \varepsilon\{0,1\}$ and $i=2,3, \ldots, r+1$.
Proof: Let $N=\alpha_{i, n}$ have $R_{m r+i}$ as the smallest term used in its unique Zeckendorf representation. Write $R_{m r+i}$ as

$$
R_{m r+i-1}+R_{m r+i-2}+\cdots+R_{m r+i-r}
$$

Then rewrite $R_{(m-1) r+i}$ as

$$
R_{(m-1) r+i-1}+R_{(m-1) r+i-2}+\cdots+R_{(m-1) r+i-r}
$$

and continue replacing the smallest term used until the smallest term obtained is R_{i}, which is one of $R_{2}, R_{3}, \ldots, R_{r+1}$.

Theorem 5.2

The Zeckendorf representation of the positive integers in terms of the r-nacci numbers $\left\{R_{n}\right\}$ is a lexicographic ordering.

Proof: Write M and N in their Zeckendorf representations,

$$
M=\sum_{j=2}^{n} M_{j} R_{j} \quad \text { and } \quad N=\sum_{j=2}^{n} N_{j} R_{j},
$$

where $M_{j}, N_{j} \varepsilon\{0,1\}$. If $M_{j}=N_{j}$ for all $j>m$ and $M_{m}>N_{m}$, then $M_{m}=1$ and $N_{m}=0$, and we prove that $M>N$. Let M^{*} and N^{*} be the truncated parts of the numbers M and N. Then

$$
\begin{aligned}
& M^{*}=M_{2} R_{2}+M_{3} R_{3}+\cdots+M_{m} R_{m} \geq R_{m} \\
& N^{*}=N_{2} R_{2}+N_{3} R_{3}+\cdots+N_{m-1} R_{m-1}
\end{aligned}
$$

Since $N_{i} N_{i-1} \ldots N_{i-r+1}=0, N^{*}$ is as large as possible when N_{m-1}, N_{m-2}, \ldots, N_{m-r+1} are nonzero. Then $m=r k+i$ for some $i=1,2, \ldots, r$. But Eqs. (5.5) show that N^{*} at its largest is $R_{m}-1$, so that $N^{*}<R_{m} \leq M^{*}$, and thus $M>N$, so that the Zeckendorf representation is a lexicographic ordering.

6. The Rising Diagonals of Pascal's Triangle

The numbers $u(n ; p, 1)$ of Harris and Styles [15] lie on the rising diagonals of Pascal's triangle with characteristic equation

$$
x^{p+1}-x^{p}-1=0
$$

We define $u(n ; p, 1)=u_{n}$, where $n \geq 0$ and $p \geq 0$ are integers, by

$$
\begin{equation*}
u_{n}=u(n ; p, 1)=\sum_{i=0}^{[n /(p+1)]}\binom{n-i p}{i}, n \geq 1, u(0 ; p, 1)=1 \tag{6.1}
\end{equation*}
$$

where $[x]$ is the greatest integer function, and $\binom{n}{k}$ is a binomial coefficient. We note that, if $p=1$,

$$
u(n-1 ; 1,1)=F_{n},
$$

and if $p=0$,

$$
u(n ; 0,1)=2^{n} .
$$

A1so,

$$
u_{0}=u_{1}=u_{2}=\cdots=u_{p}=1, u_{p+1}=2 .
$$

We write Pascal's triangle in left-justified form. Then $u(n ; p, 1)$ is the sum of the term in the leftmost column and nth row (the top row is the zeroth row) and the terms obtained by starting at this term and moving p units up
and one unit right throughout the array. We also have

$$
\begin{equation*}
u_{n}=u_{n-1}+u_{n-p-1} \tag{6.2}
\end{equation*}
$$

with the useful identity, for any given value of p,

$$
\begin{equation*}
\sum_{i=0}^{n} u_{i}=u_{n+p+1}-1 \tag{6.3}
\end{equation*}
$$

Now, each positive integer N has a unique Zeckendorf representation in terms of $\{u(n ; p, 1)\}$ for each given p, as developed by Mohanty [16]:

$$
\begin{equation*}
N=\sum_{i=p}^{s} a_{i} u(i ; p, 1) \tag{6.4}
\end{equation*}
$$

with $\alpha_{s}=1$ and $\alpha_{i}=1$ or $0, p \leq i<s$. Here, s is the largest integer such that F_{s} is involved in the sum, and $u_{1}=u_{2}=\cdots=u_{p-1}=1$ are not used in any sum. If $\alpha_{i} a_{i+j}=0$ for all $i \geq p$ and $j=1,2, \ldots, p-1$, then we have the unique Zeckendorf representation using the least number of terms. If $a_{i}+a_{i+j} \geq 1$ for all $i \geq p$ and $j=1,2, \ldots, p-1$, then we have a third form, which also is a unique representation.

The results of Mohanty can be restated. Let A_{i} be the set of positive integers whose unique Zeckendorf representation in terms of $u(n ; p, 1)$ has smallest term $u_{n}, n \geq p$, where $n \equiv i \bmod (p+1), i=0,1,2, \ldots, p$. Then every positive integer belongs to one of the sets A_{i}, where the sets A_{i} are disjoint. Further, every element in set A_{i} can be rewritten uniquely so that the smallest term used is $u_{p+i}, i=0,1,2, \ldots, p$, by replacing the smallest term repeatedly, as,

$$
\begin{aligned}
u_{n} & =u_{n-1}+u_{n-1-p}=u_{n-1}+u_{n-p-2}+u_{n-2 p-2} \\
& =u_{n-1}+u_{n-(p+1)}+u_{n-2(p+1)}+\cdots+u_{p+i} .
\end{aligned}
$$

We write a second canonical form by replacing $u_{p}=1$ by $u_{p-1}=1$ whenever it occurs, but notice that only set A_{p} is affected.

We can establish the identity

$$
\begin{equation*}
\sum_{k=1}^{n} u_{(p+1) k+i}=u_{(p+1) n+i+1}-1 \tag{6.5}
\end{equation*}
$$

for each integer $i, 0 \leq i \leq p$, by mathematical induction. For each value of p, when $n=1$, we have, by (6.2):

$$
u_{(p+1) \cdot 1+i}=u_{(p+1)} \cdot 1+i+1-u_{p}=u_{(p+1) \cdot 1+i+1}-1 .
$$

If (6.5) holds for all integers $n \leq t$, then

$$
\sum_{k=1}^{t+1} u_{(p+1) k+i}=\sum_{k=1}^{t} u_{(p+1) k+i}+u_{(p+1)(t+1)+i}
$$

$$
\begin{aligned}
& =\left(u_{(p+1) t+i+1}-1\right)+u_{(p+1) t+p+i+1}-1 \\
& =u_{(p+1) t+(p+1)+i+1}-1 \\
& =u_{(p+1)(t+1)+i+1}-1,
\end{aligned}
$$

the form of (6.5) when $n=t+1$, so that (6.5) holds for all integers n by mathematical induction.

We are now ready for our main theorem.

Theorem 6.1

The Zeckendorf representation of the positive integers in terms of

$$
\{u(n ; p, 1)\}
$$

is a lexicographic ordering. The representation in second canonical form is also a lexicographic ordering.

Proof: Write M and N in their Zeckendorf representation using the least number of terms,

$$
M=\sum_{i=p}^{n} M_{i} u_{i} \quad \text { and } \quad N=\sum_{i=p}^{n} N_{i} u_{i}
$$

where $M_{i}, N_{i} \varepsilon\{0,1\}$ and $M_{i} M_{i+j}=0$ for all $i \geq p$ and $j=1,2, \ldots, p-1$. If $M_{i}=N_{i}$ for all $i>m$ and $M_{m}>N_{m}$, then $M_{m}=1$ and $N_{m}=0$, and we prove that $M>N$. Let M^{*} and N^{*} be the truncated parts of the numbers M and N. Then

$$
\begin{aligned}
& M^{*}=M_{p} u_{p}+M_{p+1} u_{p+1}+\cdots+M_{m} u_{m} \geq u_{m} \\
& N^{*}=N_{p} u_{p}+N_{p+1} u_{p+1}+\cdots+N_{m-1} u_{m-1}
\end{aligned}
$$

Since $N_{i} N_{i+j}=0$ for $j=1,2, \ldots, p-1, N^{*}$ is as large as possible when N_{m-1} is nonzero, but then $N_{m-2}=N_{m-3}=\cdots=N_{m-p}=0$. The next largest possible u_{i} used is u_{m-p-1}, then $u_{m-2 p-1}$, etc. Now, we can represent ($m-1$) as

$$
m-1=(p+1) k+i
$$

where $0 \leq i \leq p$. By (6.5), for any value of ($m-1$), we always have

$$
N^{*} \leq \sum_{k=1}^{[(m-1-i) /(p+1)]} u(p+i) k+i=u_{m}-1<M^{*}
$$

Thus, $M>N$, and the Zeckendorf representation is a lexicographic ordering.
Note that the same proof can be used in the second canonical form because only the smallest term in the Zeckendorf representation is changed.

7. Applications to the Generalized Fibonacci Numbers $u(n ; 2,1)$

Let us concentrate now on the sequence $u(n-1 ; 2,1)=u_{n}$, where we take $p=2$ in Section 6 . We write

$$
\begin{equation*}
u_{1}=1, u_{2}=2, u_{3}=3 \text {, and } u_{n+3}=u_{n+2}+u_{n} . \tag{7.1}
\end{equation*}
$$

Theorem 7.1

Each positive integer N enjoys a unique Zeckendorf representation in the form

$$
N=\sum_{i=1}^{k} \alpha_{i} u_{i}, \alpha_{i} \alpha_{i+1}=0, \alpha_{i} \alpha_{i+2}=0
$$

where $\alpha_{i} \varepsilon\{0,1\}$.
Each positive integer N can be put into one of three sets A, B, or C according to the smallest u_{k} used in the unique Zeckendorf representation of N, by whether $k \equiv 1 \bmod 3$ for $A, k \equiv 2 \bmod 3$ for B, or $k \equiv 3 \bmod 3$ for C. Let $A=\left\{A_{n}\right\}, B=\left\{B_{n}\right\}$, and $C=\left\{C_{n}\right\}$ be the listing of the elements of A, B, and C in natural order. Note that we can rewrite each unique Zeckendorf representation by changing only the smallest term used to make a new form where the smallest term appearing is u_{1}, u_{2}, or u_{3}. If the smallest term appearing is u_{k}, we replace the smallest term repeatedly:

$$
\begin{aligned}
u_{k}=u_{3 m}=u_{3 m-1}+u_{3 m-3} & =u_{3 m-1}+u_{3 m-4}+u_{3 m-6}=\cdots \\
& =u_{3 m-1}+u_{3 m-4}+\cdots+u_{3} \\
u_{k}=u_{3 m+1}=u_{3 m}+u_{3 m-2} & =u_{3 m}+u_{3 m-3}+u_{3 m-5}=\cdots \\
& =u_{3 m}+u_{3 m-3}+\cdots+u_{1} \\
u_{k}=u_{3 m+2}=u_{3 m+1}+u_{3 m-1} & =u_{3 m+1}+u_{3 m-2}+u_{3 m-4} \\
& =u_{3 m+1}+u_{3 m-2}+\cdots+u_{2}
\end{aligned}
$$

We can summarize as

Theorem 7.2

Each member of set A has a representation in the form

$$
A_{n}=1+\alpha_{2} u_{2}+\alpha_{3} u_{3}+\cdots+\alpha_{m} u_{m}, \alpha_{i} \varepsilon\{0,1\} ;
$$

each member of set B has a representation in the form

$$
B_{n}=2+\alpha_{3} u_{3}+\alpha_{4} u_{4}+\cdots+\alpha_{m} u_{m}, \alpha_{i} \varepsilon\{0,1\}
$$

and each member of set C has a representation in the form

$$
C_{n}=3+\alpha_{4} u_{4}+\alpha_{5} u_{5}+\cdots+\alpha_{m} u_{m}, \alpha_{i} \varepsilon\{0,1\}
$$

There are some instant results:

$$
\begin{equation*}
B_{n}-1=A_{j}, \quad C_{n}-1=B_{j} . \tag{7.2}
\end{equation*}
$$

Now, let $H=\left\{H_{n}\right\}=A \cup C$, where the elements of H are listed in natural order. We write the second canonical representation for sets A, B, and C, by replacing $u_{1}=1$ by $u_{0}=1$ in the representation of A_{n} but leaving B_{n} and C_{n} represented as in Theorem 7.2. Let f be the transformation that advances by one the subscripts of each of the summands u_{n} for each representation that is in second canonical form. Let f^{*} be the transformation that advances the subscripts by one of each summand u_{n} used in the Zeckendorf representation of N.

Theorem 7.3

$$
N \xrightarrow{f} H \xrightarrow{f} A \xrightarrow{f^{*}} B \xrightarrow{f^{*}} C
$$

Proof: It is clear that $A_{n} \xrightarrow{f^{*}} B_{n} \xrightarrow{f^{*}} C_{n}$ by the lexicographic ordering theorem (Theorem 6.1). Consider the sequence $1,2,3, \ldots, H_{n}$; then, since H and B are complementary sets, we have

$$
H_{n}=n+\text { (number of } B_{j} \text { 's less than } H_{n} \text {). }
$$

Thus, by Theorem 6.1,

$$
\text { (number of } B_{j} \text { 's less than } \begin{aligned}
H_{n} & =\text { (number of } A_{j} \text { 's less than } n \text {) } \\
& =C_{n}-B_{n}-n .
\end{aligned}
$$

Here we have assumed the equivalence of the definitions of A_{n}, B_{n}, and C_{n} and the following (see [17]):

$$
\begin{aligned}
& A_{n}=\text { smallest positive integer not yet used, } \\
& B_{n}=A_{n}+n \\
& C_{n}=B_{n}+H_{n}
\end{aligned}
$$

We now consider the sequence $1,2,3, \ldots, B_{n}$; then

$$
B_{n}=n+\text { (number of } H_{j} \text { 's less than } B_{n} \text {). }
$$

From $j=B_{n}-n=A_{n}$ and Theorem 6.1, we conclude

$$
\begin{equation*}
H_{A_{n}}+1=B_{n} \tag{7.3}
\end{equation*}
$$

but we also get that

$$
A_{n}=\left(\text { number of } A_{j} \text { 's less than } C_{n}\right)
$$

from Theorem 6.1. From 1, 2, ..., C_{n}, then

$$
\left.C_{n}=n+\text { (number of } A_{j} \text { 's less than } C_{n}\right)+ \text { (number of } B_{j} \text { 's less than } C_{n} \text {) }
$$

$$
=n+A_{n}+\text { (number of } B_{j} \text { 's less than } C_{n} \text {), }
$$

or

$$
\text { (number of } \left.B_{j} \text { 's less than } C_{n}\right)=C_{n}-\left(A_{n}+n\right)=C_{n}-B_{n}=H_{n} .
$$

We therefore conclude from $C_{n}-1=B_{j}$ that

$$
\begin{equation*}
B_{H_{n}}+1=C_{n} \tag{7.4}
\end{equation*}
$$

From Theorem 6.1,
(number of B_{j} 's less than C_{n}) (number of A_{j} 's less than B_{n}) $=H_{n}$.
Therefore, since $B_{n}-1=A_{j}$, we conclude

$$
\begin{equation*}
A_{y_{n}}+1=B_{n} \tag{7.5}
\end{equation*}
$$

From (7.5) and (7.3), we conclude

$$
\begin{equation*}
H_{A_{n}}=A_{H_{n}} . \tag{7.6}
\end{equation*}
$$

We would normally have that $A_{n} \xrightarrow{f^{*}} B_{n}$ and $A_{n} \xrightarrow{f} B_{n}-1=H_{A_{n}}=A_{E_{n}}$. Also, $B_{n} \xrightarrow{f} C_{n}=H_{B_{n}}$. But, $C_{n} \xrightarrow{f} A_{j}$ for some j, so that set N under f goes into set H. From Theorem 6.1, $A_{n} \xrightarrow{f} H_{A_{n}}=B_{n}-1=A_{H_{n}}$ and $B_{n} \xrightarrow{\vec{f}} H_{B_{n}}=C_{n}$, and $C_{n} \xrightarrow{f} H_{C_{n}}$. Now, $H_{C_{n}}=A_{B_{n}}$ as B and H are complementary, and these are the only elements left.

From (7.5), we conclude that

$$
\begin{equation*}
A_{A_{n}}+1=B_{P_{n}} \quad \text { and } \quad A_{C_{n}}+1=B_{B_{n}}, \tag{7.7}
\end{equation*}
$$

since $H_{B_{n}}=C_{n}$. Since $H_{A_{n}}+1=B_{n}$,

$$
\begin{equation*}
H_{A_{H_{n}}}+1=B_{H_{n}}=A_{H_{H_{n}}} . \tag{7.8}
\end{equation*}
$$

Note that, if we remove all $H_{B_{n}}=C_{n}$ from the ordered sequence H_{n}, then all we have left are the A_{n}, and these are $H_{H_{n}}=A_{n}$. Thus,

$$
\begin{equation*}
A_{A_{n}}+1=B_{H_{n}} . \tag{7.9}
\end{equation*}
$$

Putting it together, $A_{A_{n}}+1=B_{H_{n}}$ and $B_{H_{n}}+1=C_{n}$ imply that $A_{A_{n}+1}=C_{n}+1$, since $C_{n}+1=A_{j}$ always. Thus,

$$
\begin{equation*}
A_{A_{n}+1}-A_{A_{n}}=3 \tag{7.10}
\end{equation*}
$$

From $B_{H_{n}}+1=C_{n}$, one concludes that, because H and B are complementary, $B_{B_{n}}+1 \neq C_{j}$, and since no two B_{j} 's are consecutive, $B_{B_{n}}+1=A_{j}$. From

$$
A_{C_{n}}+1=B_{B_{n}} \quad \text { and } \quad B_{B_{n}}+1=A_{j}=A_{C_{n}+1},
$$

we have

$$
\begin{equation*}
A_{C_{n}+1}-A_{C_{n}}=2 \tag{7.11}
\end{equation*}
$$

We consider $1,2,3, \ldots, H_{n}$. Then

$$
H_{n}=n+\text { (number of } B_{j} \text { 's less than } H_{n} \text {), }
$$

and

$$
C_{n}-B_{n}-n=\text { (number of } B_{j} \text { 's less than } H_{n} \text {) }
$$

$=$ (number of A_{j} 's less than n) (number of C_{j} 's less than A_{n}).
Therefore,

$$
C_{B_{n}}-B_{B_{n}}-B_{n}=\text { (number of } C_{j} \text { 's less than } A_{B_{n}} \text {). }
$$

But, $H_{B_{n}}=C_{n}$, so $H_{B_{n}}-B_{n}=C_{n}-B_{n}=H_{n}$. Therefore, we conclude that

$$
\begin{equation*}
C_{H_{n}}+1=A_{B_{n}} \tag{7.12}
\end{equation*}
$$

No two C_{j} 's have a difference of 2. Now, can $A_{B_{n}}+1=B_{j}$? The answer is no, since $A_{A_{n}}+1=B_{n}$ and H and B are complementary sequences. Then $A_{B_{n}+1}-$ $A_{B_{n}} \geq 1$ so that $C_{B_{n}+1}-C_{B_{n}} \geq 3$, and (7.10) implies that $C_{A_{n}+1}-C_{A_{n}}=6$, while (7.11) implies that $C_{C_{n}+1}-C_{C_{n}}=4$.

By considering the mappings under f^{*}, we now conclude that:

Theorem 7.4

$$
\begin{array}{lll}
A_{A_{n}+1}-A_{A_{n}}=3, & A_{B_{n}+1}-A_{B_{n}}=1, & A_{C_{n}+1}-A_{C_{n}}=2 ; \\
B_{A_{n}+1}-B_{A_{n}}=4, & B_{B_{n}+1}-B_{B_{n}}=2, & B_{C_{n}+1}-B_{C_{n}}=3 ; \\
C_{A_{n}+1}-C_{A_{n}}=6, & C_{B_{n}+1}-C_{B_{n}}=3, & C_{C_{n}+1}-C_{C_{n}}=4
\end{array}
$$

Finally, we list the first few members of A, B, C, and H in Table 7.1.
TABLE 7.1

n	A_{n}	B_{n}	H_{n}	C_{n}
1	1	2	1	3
2	4	6	3	9
3	5	8	4	12
4	7	11	5	16
5	10	15	7	22
6	13	19	9	28

Notice that we may extend the table with the recurrences:

$$
\begin{aligned}
C_{n}+A_{n} & =A_{B_{n}} \\
B_{n}+H_{n} & =C_{n} \\
n+A_{n} & =B_{n},
\end{aligned}
$$

$$
\begin{aligned}
A_{n}+2 C_{n}+B_{n} & =C_{B_{n}} \\
A_{n}+C_{n}+B_{n} & =B_{E_{n}} .
\end{aligned}
$$

We have two corollaries to Theorem 7.4:

Corollary 7.4.1
(Number of A_{j} 's less than n) $=C_{n}-B_{n}-n=f(n)$,
(Number of B_{j} 's less than n) $=C_{n}-2 A_{n}-1=g(n)$,
(Number of C_{j} 's less than n) $=3 B_{n}-2 C_{n}=h(n)$.
Proof: $f(1)=0$ and

$$
\begin{aligned}
& f\left(A_{m}+1\right)-f\left(A_{m}\right)=1, \\
& f\left(B_{m}+1\right)-f\left(B_{m}\right)=0, \\
& f\left(C_{m}+1\right)-f\left(C_{m}\right)=0 .
\end{aligned}
$$

Thus, $f(n)$ increments by one only when n passes A_{m}, so that $f(n)$ counts the number of A_{j} 's less than n.

Next, $g(1)=0$, and

$$
\begin{aligned}
& g\left(A_{m}+1\right)-g\left(A_{m}\right)=0, \\
& g\left(B_{m}+1\right)-g\left(B_{m}\right)=1, \\
& g\left(C_{m}+1\right)-g\left(C_{m}\right)=0 .
\end{aligned}
$$

Thus, $g(n)$ increments by one only when n passes B_{m}, so that $g(n)$ counts the number of B_{j} 's less than n 。

Similarly, $h(1)=0$, and

$$
\begin{aligned}
& h\left(A_{m}+1\right)-h\left(A_{m}\right)=0, \\
& h\left(B_{m}+1\right)-h\left(B_{m}\right)=0, \\
& h\left(C_{m}+1\right)-h\left(C_{m}\right)=1 .
\end{aligned}
$$

Thus, $h(n)$ increments by one only when n passes C_{m}, so that $h(n)$ counts the number of C_{j} 's less than n.

Corollary 7.4.2

$$
\text { Let } u_{m+1}-u_{m}=\left\{\begin{array}{llll}
p, & m & \varepsilon A ; \\
q, & m & \varepsilon & B ; \\
r, & m & \varepsilon & C
\end{array}\right.
$$

Then

$$
u_{m}=\left(C_{m}-B_{m}-m\right) p+\left(C_{m}-2 A_{m}-1\right) q+\left(3 B_{m}-2 C_{m}\right) r+u_{1} .
$$

References

1. C. G. Lekkerkerker. "Voorstelling van natuurlÿke getallen door een som van Fibonacci." Simon Stevin 29 (1951-1952):190-95.
2. Michael J. Whinihan. "Fibonacci Nim." The Fibonacci Quarterly 1 , no. 4 (Dec. 1963):9-14.
3. R. Silber. "Wythoff's Nim and Fibonacci Representations." The Fibonacci Quarterly 15, no. 1 (Feb. 1977):85-88.
4. V. E. Hoggatt, Jr., M. Bicknell-Johnson, and R. Sarsfield. "A Generalization of Wythoff's Game." The Fibonacci Quarterly 17 (1979):198-211.
5. L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr. "Fibonacci Representations." The Fibonacci Quarterly 10, no. 1 (Jan. 1972):1-28.
6. V. E. Hoggatt, Jr. "Generalized Zeckendorf Theorem." The Fibonacci Quarterly 10, no. 1 (Jan. 1972):89-94.
7. Robert Silber. "On the N Canonical Fibonacci Representations of Order N." The Fibonacci Quarterly 15, no. 1 (Feb. 1977):57-66.
8. L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr. "Fibonacci Representations of Higher Order." The Fibonacci Quarterly 10, no. 1 (Jan. 1972): 43-70.
9. Marcellus E. Waddill and Louis Sacks. "Another Generalized Fibonacci Sequence." The Fibonacci Quarterly 5, no. 3 (Oct. 1967):209-22.
10. V. E. Hoggatt, Jr. and A. P. Hillman. "Near1y Linear Functions." The Fibonacci Quarterly 16, no. 1 (Feb. 1979):84-89.
11. L. Moser and J. Lamdek. "Inverse and Complementary Sequences of Natural Numbers." Amer. Math. Monthly 61 (1954):454-58.
12. A. S. Fraenke1. "Complementary Sequences of Integers." Amer. Math. Monthly 84 (Feb. 1977):114-15.
13. V. E. Hoggatt, Jr. and Marjorie Bicknel1. "Generalized Fibonacci Polynomials and Zeckendorf's Theorem.' The Fibonacci Quarterly 11, no. 4 (Nov. 1973):399-419.
14. V. E. Hoggatt, Jr. and Marjorie Bicknell. "Generalized Fibonacci Polynomials and Zeckendorf's Theorem." The Fibonacci Quarterty 11(1973):399.
15. V. C. Harris and Carolyn C. Styles. "A Generalization of Fibonacci Numbers." The Fibonacci Quarterly 2, no. 4 (Dec. 1964):277-89.
16. S. G. Mohanty. "On a Partition of Generalized Fibonacci Numbers." The Fibonacci Quarterly 6, no. 1 (Feb. 1968):22-34.
17. V. E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. "A Class of Equivalent Schemes for Generating Arrays of Numbers." The Fibonacci Quarterly (to appear).
18. Molly Olds, in a private communication with V. E. Hoggatt, Jr., Spring, 1979.
