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The Zeckendorf theorem [1], which essentially states that every positive 
integer can be represented uniquely as a finite sum of distinct Fibonacci 
numbers 1, 2, 3,5, ..., 8, where no two consecutive Fibonacci numbers appear, 
led to so much new work that the entire January 1972 issue of the F-ibonaeei-
Quarterly was devoted to representations. 

Now, through consideration of the ordering of the terms in a representa-
tion and the ordering of the integers, we study mappings of one integer into 
another by increasing the subscripts of the terms in a representation. We 
are led to number sequences related to the solutions of Wythofffs game [2], 
[3], and the generalized Wythoff!s game [4], We investigate representations 
using Fibonacci numbers. Pell numbers, generalized Fibonacci numbers arising 
from the Fibonacci polynomials, Lucas numbers, and Tribonacci numbers. 

1. The Fibonacci Numbers 

If we define the Fibonacci numbers in the usual way, 

FQ = 0, F1 = 1, Fn+1 = Fn + Fn_19 n > 1, 

then every positive integer N can be written in its Fibonacci-Zeckendorf rep-
resentation as 

(1.1) N = a2F2 + a3F3 + akFh + • • • + akFk , 

where a^ e {0, l}, a^a^_x = 0, or a representation as a sum of distinct Fibo-
nacci numbers where no two consecutive Fibonacci numbers may be used. Such 
a representation is unique [5] and is also called the first canonical form 
of N. 

If, instead, we write the Fibonacci representation of N in the second 
canonical form, we replace F2 with F19 and 

(1.2) N = a1F1 + a3F3 + a^Fh + ••• + akFk , 

where a^ £ {0, 1}, a2 = 0, a^a^.^ = 0. Such a representation is also unique. 
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Notice that, if the smallest Fibonacci number used in the representation has 
an odd subscript, the two forms are the same, but if the smallest Fibonacci 
number used has an even subscript, it can be written in either form. For ex-
ample, the Zeckendorf representation of 8 = F6 becomes 8 = F5 + F3 + F1, and 
11 = FG + Fh = F, + F3 + F X . 

We next need some results on the ordering of the terms in a representa-
tion. A lexicographic ordering was earlier considered by Silber [7], We de-
fine a lexicographic ordering as follows: 

Let positive integers M and N each be represented in terms of a strictly 
increasing sequence of integers {an} so that 

k k* 

d.3) ^ = Ea;a;> ^ = I > ^ ' 
i = 1 i = 1 

where â ,3-z: £ (0, 1, . ..,p}. Let a^ = 3^ for all i > m. If am > 3W only if 
M > N9 then we say that the representation is a lexicographic ordering. 

Theorem 1.1 

The Zeckendorf representation of the positive integers in terms of Fibo-
nacci numbers is a lexicographic ordering. 

Proof: Let M and N be the two positive integers given in (1.3), where 
an = Fn + 19 p = 1, and GL^a^.-j^ = 0, 3i3^_1 = 0. If a^ = &i for all i > m, and 
if am > Bm, then am = 1 and $m = 0, and we compare the truncated parts of the 
numbers. 

M* = a2F2 + asF3 + - • • + a ^ F ^ + Fm > Fm 

N* = &2F2 + 33^3 + ••• + e„.A-i <.Fm-i + Fm-3 + Fm-s + ••• <Fm - L> 

so that M* > N* and M > N9 since it is well known that 

F2k + F2k-2 + "** + F2 = F2k-l ~ 1» 

7? 4.7? _|_ . . . 4. 77 = 7? _ 1 

Application: Let f* be the transformation that advances by one the sub-
scripts on each Fibonacci number used in the Zeckendorf representation of the 
positive integers M and N. If 

M - — Mr and N -£-*- N ', 

and if M > N, then Mr > Nr. 

Theorem 1.2 

The Fibonacci representation of integers in the second canonical form is 
a lexicographic ordering. 
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The proof of Theorem 1.2 is very similar to that of Theorem 1.1. Next, 
we let f be the transformation that advances by one the subscripts of the 
Fibonacci numbers used in the representation in the second canonical form of 
the positive integers M and N. If 

M -^Mf and N - ^ N !, 

and if M > N9 then M' > Nr. 

Let A = {An} and B = {Bn} be the sets of positive integers for which the 
smallest Fibonacci number used in the Zeckendorf representation occurred re-
spectively with an even or with an odd subscript. Since the Zeckendorf rep-
resentation is unique, sets A and B cover the set of positive integers and 
are disjoint. 

Notice thats if the smallest subscript for a Fibonacci number used in the 
Zeckendorf representation for a number is odd, then the first and second ca-
nonical forms are the same. Thus, under f or / *, every element of B is mapped 
into an element of A. But every element of A can be written in either canon-
ical form, and under / every element of A is mapped into an element of A. 
Thus, every positive integer n is mapped into an element of A, or, aided by 
the lexicographic ordering theorems, 

An-J-* AAn 

Bn - ^ ABn 

n *- An 

f* 
^•n u n 

so that 

(1.4) AAn + 1 = Bn 

follows, as well as 

(1.5) An + n = Bn. 

Compare to the numbers an and bn9 where (an,bn) is a safe pair for Wythofffs 
game [3], [4]. If one uses the Zeckendorf representation of positive inte-
gers using the Lucas numbers 2, 1, 3, 4, 7, • ..., since the Lucas numbers are 
complete and have a unique Zeckendorf representation, we could make similar 
mappings. This is essentially developed in [4] but in a different way. For 
later comparison, we recall [3], [4], that 

(1.6) An = [na], 

where [x] is the greatest integer in x and a = (1 + /I)/2 is the positive 
root of y1 - y - 1 = 0. 
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2. The Pell Numbers 

Let us go to the Pell sequence {Pn}, defined by 

P± = 1, P2 = 2, Pn+2 = 2P n + 1 + Pn, n i l . 

The Pell sequence boasts of a unique Zeckendorf representation [6] . Consider 
the positive integers and the three sets A = {An}, B = {Sn}, and (7 = {Cn}9 
where i4n = Bn - 1 and C„ = 2Bn + n, and A9 B, and C contain numbers in their 
natural order of the form 

An = 1 + a2P2 + a3P3 + ••• + akPk , 

(2.1) £„ = a2P2 + a3P3 + ••• + akPR9 a2 ^ 0, 

where a^ e {0, 1, 2}, and if a^ = 2, then a^_x = 0. 

Since we next wish to map the positive integers into set B9 we will need 
a lexicographic ordering theorem for the Pell numbers. 

Theorem 2.1 

The Zeckendorf representation of the positive integers, in terms of Pell 
numbers, is a lexicographic ordering. 

Proof: Let M and N be two positive integers given by 

k k 

M = E a A > N =E^> 
where a^, 3 i e {0, 1, 2} except a x , 3x ^ 2; and i f a^ = 2 , then a^_x = 0 , or 
i f g^ = 2, then Bi_i = 0. If ai = 3i fo r a l l i > m, and i f am > 3m> then 
aw = 2 and 3m = 1, or affl = 1 and 3m = 0 , or affl = 1 and $m = 0. We compare 
t h e t r u n c a t e d p a r t s of t he numbers when am = 2 and 3W = 1: 

Af* = a x P x + a 2 P 2 + • • • + 2Pm >_ 2Pm 

N* = 3 ^ + 32P2 + • ' ' + Pm £ Pm + Pm " 2 < 2PW , 

Since, if 315 32» 33» •.•, &m-i a r e taken as large as possible, whether m is 
even or odd, 

2(^-i + ••• + P 3 ) + P , =P2fc - 1 =P m - 1, 

^ ^ 2k + P2k~2 + **" + ^ 2 ^ = ^ 2 k + l ~ ^ = ^ W ~ 1' 

so that M* > N* and M > N. If am = 2 and ]8W = 0, then 21/* is even smaller. 
If am = 1 and 3m = 0, then M* _> POT, but notice that, if the coefficients 3i 
are taken as large as possible, we can only reach N* = Pm - 1, and again 
M* > N*9 making M > N. By definition (1.3), we have proved Theorem 2.1. 
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In an entirely similar manner, we could prove Theorem 2.2, where we write 
the second canonical form by replacing P2 by 2P1 and 2P2 by P2 + 2P1 in the 
Zeckendorf representation, where again if 2Pk appears, then P^_x is not used 
in that representation. This second canonical form is again unique [6]. We 
write: 

Theorem 2.2 

The Pell number representation of integers in the second canonical form 
is a lexicographic ordering. 

Let f be the transformation that advances by one the subscripts of each 
Pell number used in the representation in the second canonical form of the 
positive integers M and N, and let /* be the transformation that is used for 
the Zeckendorf form. Then, as before, if 

M-J-+Mf and N - ^ N ', 

and if M > N9 then Mr > Nr, and the same for transformation /*. 

Now, we consider An, Bn9 and Cn of (2.1), and mappings of the integers 
under / and f*. We must first put Bn into the second canonical form. In the 
representation for Bn9 replace P2 by 2P1, or replace 2P2 by P2 + 2Pl9 since 
the smallest term of Bn is either P2 or 2P2. Now, under /, Bn is mapped into 
B3^9 while under f*, Bn goes into Cn9 applying the lexicographic theorems for 
Pell numbers. 

P2 - ^ P 3 5 or 2 -^- 5; 

2P1 J-+ 2P2, or 2 -£-» 4; 

2P2 - ^ 2P3, or 4
 J—^ 10; 

P2 + 2P1-^— P3 + 2P2, or 4^-— 5 + 2 • 2 = 9. 

Thus, the image of Bn under / is one less than the image of Bn under /*, and 

(2.2) BBn + 1 = Cn. 

We know where the ̂ 4n's go under /: into Bn9 since the An's start with a one, 
while their images start with a P2. The 5n's (second form) have 2Pl9 so their 
images start with 2P2, clearly a Bn. Now, where do the Cn

?s go? Each Cn be-
gins with 5 or 10. Replace 2P3 = 10 by 5 + 2 • 2 + 1 = P3 + 2P2 + P1, and 
replace 1P3 = 5 by 2P2 + P1 = 2 • 2 + 1 and under /, 

and 
10 -> P4 + 2P3 + P2 = 12 + 2 • 5 + 2 = 24, 

5 -> 2P3 + P2 = 2 • 5 + 2 = 12. 

Thus An9 modified Bn9 and modified Cn are all carried into Bn by / and 

Byn *~ C y, . 
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For later comparison, we note that 

(2.3) Bn = [n(l.+ /2)]5 

where [x] is the 'greatest integer in x, and (1 + /2~) is the positive root of 
y2 - 2y - 1 = 0. 

3. Generalized Fibonacci Numbers (Arising from Fibonacci Polynomials) 

Next, consider the sequence of generalized Fibonacci numbers {un}, 

uQ = 0, u1 = 1, and un + 1 = fcun + un_l9 n >_ 1. 

[Note that, if the Fibonacci polynomials are given by fQ (x) = 0, f1(x) = 1, 
and fn+1(x) = xfn(x) + Jn..iW5 n _> 1, then un = fn(k).] Let set B be the 
set of positive integers whose Zeckendorf representation has the smallest un 
used with an even subscript, and set 0 the set of integers whose Zeckendorf 
representation has the smallest un used with an odd subscript. We know from 
[6] that N has a unique representation of the form 

(3.1) N = CL1U1 + a2u2 + ••• + amum, 

where 

a-L e {0, 1, ..., k - 1}, 

ai e {0, 1, 2, .. . , k}9 i > I, 

ai = k => oti_1 = 0, 

so that sets B and 0 cover the positive integers without overlapping. 

We wish to demonstrate a second canonical form for elements of set B. We 
do this in two parts: Let a2k ^e t n e coefficient of the least u2k used; then 
a2k - 1> 2, 3, ..., k. Take lu2k and replace it by ku2k-i + u2k-2> and con-
tinue until you obtain lu2, and replace that by ku19 

u2k = k(u2k_^ + u2k_3 + ••• + u3 + u±). 

Thus, 

Bn = R + &U2fc _ x + ^2fe - 3 + " " " + ^U3 + ^ U l " 

If / is again the transformation that increases the subscripts by one for 
integers written in the second canonical form, and f* the transformation for 
the Zeckendorf form, then, if we can again use lexicographic ordering, 

Bn —-—^R ' + ku2k + ku2k_2 + ••• + ku2 

-p-k 

Bn——*Rr + u2k + 1 , 

but from [6], 
u2k+i - 1 = k(u2k + u2k,2 + ••• + uk + u2), 
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so that the images differ by 1. Now, under f9 we see that all of the elements 
of 0 are mapped into set B and set B in second canonical form is also mapped 
into set B. Thus, provided we have lexicographic ordering, the positive in-
tegers n map into Bn under /. If we split set 0 into sets A whose elements 
use lu1 in their representations and C =,{CW}, where Cn does not use lu1 in 
its representation, then 

Bn - £ - Cn , and Bn - ^ BBn, 

and since the images differ by 1, 

(3.2) BBn + 1 = Cn9 n > 0. 

The general lexicographic theorm should not be difficult. 

Theorem 3.1 

The Zeckendorf representation of the positive integers in terms of the 
generalized Fibonacci numbers {un} is a lexicographic ordering. 

Proof: Let M and N be positive integers which have Zeckendorf represen-
tations 

n n 
M=Y,Miuc and ff-2>^-

j = i J = i 

Compare the higher-ordered terms from highest to lowest. If Mj = Nj for all 
j > 777, and Mm > Nm, then we prove that M > N. It suffices to let M = Mmum 
and Mm >_Nm + 1. 

N £ N* = ku2j-_1 + ku2j-_3 + ku2j_5 + ••• + ku3 + (k - l)ux = u2j. - 1 

or 

N <_ N* = ku2 . + ku2._2 + • • • + ku2 = u2j- + 1 - 1. 

Thus M >_ M* > N* >_ N9 so that M > N, proving Theorem 3.1. 

This shows that, if two numbers M and N in Zeckendorf form are compared, 
then the one with the larger coefficient in the first place that they differ, 
coming down from the higher side, is larger. Now, what need be said about 
the second canonical form? If both M and N are in the second canonical form, 
and they differ in the jth place, whereas their smallest nonzero coefficient 
occurs in a position smaller than the jth place, then the original test suf-
fices. If they both differ in the smallest position, then again the one with 
the larger coefficient there is larger, as their second canonical extensions 
are identical. 

Theorem 3.2 

The representation of positive integers in the second canonical form us-
ing generalized Fibonacci numbers {un} is a lexicographic ordering. 
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Under transformation f9 using the second canonical form, if M = N + 1, 
then 

M-L+M', a n d N-L+Nr9 

such that Mr > /!/' + k - 1. For example, 

u1 = 1-L»u2 = fc, 2 = 2 U - L ^ - 2 U 2 = 2fe, and 2k > k + fe - 1, 

taking Af = 2 and N = 1. 

We now return to sets ̂ 4 and C which made up set 0 and with set B covered 
the positive integers. Sets A9 B, and C can be characterized as the positive 
integers written, in natural order, in the form 

An = a1u1 + a2u2 + OL3U3 + ••• + amum9 a± + 0, k9 

(3.3) Bn = a2u2 + a3u3 + ••• + oimum9 a2 ̂  0, 

cn = a3^3 + a^u^ + •'*•+ amum9 a3 ̂  0, ai e {0, 1, 2, 3, . .., fc}. 

For the numbers Bn9 we can write: 

Theorem 3.3 

BBn+l ~ B3n = k + 1, and if m + Bn, 

Also, it was proved by Molly Olds [18] that 

Theorem 3.4 

Cn = kBn + n. 

4. The Tribonacci Numbers 

The Tribonacci numbers {Tn} are 

T0 = 0, 2\ = 1, T2 = 1, Tn+3 = Tn+ 2 + Tn+ 1 + Tn9 n > 0. 

The Tribonacci numbers are complete with respect to the positive integers, 
and the positive integers again have a unique Zeckendorf representation in 
terms of Tribonacci numbers (see [8]). That is, a positive integer N has a 
unique representation in the form 

(4.1) N = a2T2 + a3T3 + ... + akTk9 

where ai e {0, l}, aiai_xai_2 = 0. 

Now, consider the numbers An9 Bn9 and Cn listed in Table 4.1. Here, be-
cause we want completeness in the array, we take An as the smallest positive 
integer not yet used, and we define A n as the number of C^fs less than An9 
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and <Pn as the number of Ck
,s less than B„. Then, we compute Bn and Cn as 

(A.2) Bn = Un - A„, 

(4-3) Cn = Wn - <Pn. 

We write the Tribonacci recurrence relation: 

(4.4) n + An + Bn = Cn. 

TABLE 4.1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

An 

1 
3 
5 
7 
8 
10 
12 
14 
16 
18 

Bn 

2 
6 
9 
13 
15 
19 
22 
26 
30 
33 

Cn 

4 
11 
17 
24 
28 
35 
41 
48 
55 
61 

Now, A = {An} is the set of positive integers whose Zeckendorf represen-
tation has smallest term Tk, where k E 2 mod 3; B = {Sn} contains those pos-
itive integers using smallest term Tk , where /c = 3 mod 3; and C = {Cn} has 
smallest term Tk9 where k = I mod 3, k > 3. We have suppressed !T1 = 1 in the 
above; thus, every positive integer belongs to A, B, or C by completeness, 
where A, Bs and C are disjoint. 

We write a second canonical form by rewriting each An by replacing T2 by 
Tx; replacing T3 = 2 in each Bn by T2+ Tx; and leaving the numbers Cn alone. 

Note that, instead of saying uAn has smallest term T3rn+2," we could say 
"An has 3/?? + 1 leading zeros." 

Theorem 4.1 

Each An has /c = 1 mod 3 leading zeros in the Zeckendorf representation 
and can be written so that 

An = T2 + a3T3 + a4T4 + ••• + a ^ , where o^ e {0, l}. 

Each Bn has fc E 2 mod 3 leading zeros and can be written as 

Bn = T3 + a ^ + ••• + aP2V, where ai e {0, l}. 
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Each Cn has k =• 0 mod 3 leading zeros, k >_ 39 and can also be written 

Cn = Th + a5T5 + ••• + arTr9 where o^ e {0, 1}. 

Proof: Let T3m+2 have a nonzero coefficient. Replace T3m+2 by 

™3m+l + -^3/7? + ™ 3 m - l = ™ 3m+ 1 + -^3tf? + ™ 3 ( m - l ) + 2 * 

Continue until the right member ultimately lands in slot 2. The similar re-
placement for T0 in By, and T0„,, in Cn will establish the forms given above. 
^ dm rL dffl+l " ° 

Theorem 4.2 

The Zeckendorf representation of the positive integers in terms of the 
Tribonacci numbers {Tn} is a lexicographic ordering. The representation in 
the second canonical form is also a lexicographic ordering. 

Proof: Write M and N in their Zeckendorf representations, 

n n 

J = 2 j = 2 

If Afj = Nj for all j > m and Mm > Nm, then Mm = 1 and /Vm = 0, and we prove 
that M > N. We let M* and 21/* be the truncated parts of the numbers M and N. 
Then 

M* = M2^2 +M3T3 + ••• +MmTm >_ Tn9 

N* = N2T2 + N3T3 + .-• + tfm_12'JI!_1. 

Since N^N^_ 1Ni_2 = 0, #* is as large as possible when both #m-i and #m-2 are 
nonzero. Either m = 3k or 777 = 3& + 1 or m = 3k - 1. We use three summation 
formulas given by Waddill and Sacks [9]. 

If m = 3ks then 

k 
N* i E ^ - i + ̂ 3i-2) ~ T1 = T3, - 1 < Tm £ M*. 

i = i 

If 77? = 3k + 1, 

^ * < E (̂ 3i + ̂ i-i) = ̂ 3k+i - 1 < Tm < M*. 
i = l 

If 777 = 3k - 1, 

k 
^* < E (T3i-2 + ̂ - 3 ) " ̂ 1 = ̂ 3,., - 1 < Tm < M*. 

i = l 
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Thus in all three cases, M* > N* so that M > N, and the Zeckendorf represen-
tation is a lexicographic ordering. The same summation identities would show 
that the second canonical form is also lexicographic. 

Next, let / be the transformation that increases the subscripts by one 
for integers written in the second canonical form, and f* the similar trans-
formation for the Zeckendorf form. Now, the numbers in set A are ordered, 
and since we have lexicographic ordering for the second canonical form, 

7i * A A jX ». A * B -f »• A O -£-*- A „ 

Since we have lexicographic ordering for the Zeckendorf form, 

f-k J?* f* 

& n **" & n s & n "*"" ^ n s ^ n "" ̂  Cn ' 

But each AA is one less than Bn, and each AB is one less than Cn, so that 

(4.5) AAn + 1 = Bn9 and ABn + 1 = Cn. 

(4.5) reminds one of aan 4- 1 = b n from Wythoff's game [3], [4]. Note that 
{Cn} clearly maps into {An} because they were of the form whose least term 
had subscript k E 2 mod 3, so that an upward shift of one yields k = 3 mod 3 
and, hence, Ac • 

Comments: Under f,. An maps to A An , and under f*, An maps to Bn • If An 
is in second canonical form, then An + 1 = A n + T2 is" also in second canoni-
cal form. Thus, using the Zeckendorf and then the second form for An, 

An + T1-^^Bn + T2 = Bn + 1, 

4n + T2—l—+AAn+ T3 = AAn+ 2, 

so that AAn + 1 = Bn. Clearly Bn + 1 is an 4j since the 5n's have T3 as the 
lowest nonzero Tribonacci number, but Bn + 1 has T2. Thus, 

(4.6) AK + 1 = Bn and 5n + 1 = AAn+l 

so that 

We also have shown that there are An of the Aj's less than Bn. 

Under /, Sn maps to ABri , and under / *, Bn maps to Cn.. Therefore, 

ABn + I = Cn, 

which shows that there are Bn of the Aj's less than Cn. Also, Cn + 1 is an 
i4J- since each Cn can be written with the least summand Th. Therefore, 

and 

(4.7) 4Sn + 1 = C„ and C„ + 1 = ABn+l 
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give us 

ABn+l~ &Bn = 2« 

Next, we look at Cn and Cn + 1. 

Cn-^-~ACvt and Cn + I = Cn + T1-^-*Ac^+1 =• Ac + 1. 

Since Cn + 1 is ̂ 5 +1, the one is T± in Cn + 1. We conclude that 

Acn+i Acn *• -

This gives all the recurrent differences for the A sequence. 

We now turn to the B sequence. 

1 = (ACn+1 - ACn ) -£- (Bc^+1 - BCr ) = 2, 

2 = W.4.+1 " AAn > ^ (S4,+i - S.4„ ) = A, 

1 + 1 = 2 = (4 B J I + 1 - 4 ^ ) - £ • (B^ + 1 - Bfl< ) = 1 + 2 = 3 . 

We look f i r s t a t 

Cn-^~ACr and C„ + 1-^— Ac+1 

because C„ + 1 i s an ^ so 1 in i t i s T1. Thus 

V i = 4 C + T2^~ BCn+1 = B ^ + T3 = B ^ + 2, 
and 

Bcn+i ~ Bcn = 2 -

Now, in second canonical form, An has 571 but no T2, but An + 1 has 571 and 
!T2f or, 4n + 1 = An + T2. 

^n-^^A ~^BA 

An + 1 = An + ^ - ^ ^ + ^ 3 —J—+ BAn + Th = 5 ^ + 4 , 

4 n + l-^AAn+1 -^-BAn+1 = BAn + 4 . 

Thus, 

54„ + l ~ BAK
 = 4 ' 

Next, let Bn =Rn+T3=Rn+T2+ T1 be in second canonical form. 

Bn -t-ABn = /?„' + T3 + T2 -^~ i?;' + T, + T3, 

Bn + 1 = Rn + T3 + T1^-R'n + Th + T2 - ^ i?J,' + T5 + T3, 

Bn + 1-^Vi -^Vi = *" + T5 + T3-

Therefore, 
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BBn+i - BBn = (Rn + T5 + T,) - (R» + T4 + T3) = T5 - Th = 3. 

Finally, for the third difference of B numbers, 
/ /* 

Cn *Acn
 Bcn , 

? .crk 

Cn + 1 = Cn + T^-L~ACn + T2^—BCn + T3, 

Therefore, 

Dcn+i Br = To = 2. 

Lastly, the three differences of consecutive CjTs are found by using the 
above differences of Aj*s and Bj*s and (4.4). 

Q a + i - <M„ = (4 + 1 + AAn+1 + 2^+1) - (An + 4 ^ + B4B ) 

= (An + 1 - 4 n ) + WA n + 1 - A A n ) + ( 5 4 n + 1 - BAn ) 

= 1 + 2 + 4 = 7 . 

^ n + i ~ CBn - (B n + 1 - B n ) + (A5 n + 1 - ^ ) + ( B 5 n + 1 - S 5 n ) 

= 1 + 2 + 3 = 6 . 

CCn+l - ̂  = (̂ „ + 1 - £») + (\+1 " ̂  ) + (%B+1 " ^ 

= 1 + 1 + 2 = 4 . 

We summarize all the possible differences of successive members of the A , 
B9 and C sequences as: 

Theorem 4.3 

4^+1 ~ ^An
 = 2» ^Bn+1 - AB^ = 2, A c ^ + 1 A C n = 1 ; 

S 4 n + 1 " BAn = 4 > 5 5 n + l - BBn
 = 3 ' 5 C n + l " BCn = 2> 

^ n + l " ^ n
 = 7 s ^ + 1 " C S n

 = 6 ' CCn + l " ^ = 4 ' 

Returning to (4.6), we know that there are ̂ n of the A^s less than B n . 
Then, Bn is n plus the number of A^s less than Bn, plus the number of Ck * s 
less than B n , or, 

£ n = n + 4 n + <Pn. 

Then 

Cn = 25n - <Pn = 2Sn - (5n - n - An) = Bn + A n + n, 

a consistency proof that the C n
! s are properly defined by the array of Table 

4.1. 
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Theorem 4.4 

The number of Cj's less than An is 

l\n — ZA.n — D n . 

Proof: We show t h a t 24 n - Bn inc rements by 1 i f and only i f n = Bm, and 
zero o t h e r w i s e , app ly ing Theorem 4 . 3 : 

2 0 V i - AAn ) - (BAn+1 - BAn ) = 2(2) - 4 = 0, 

2(ABn+i " ABn ) ~ (55n+i ~ BBn ) = 2(2) - 3 = 1, 

2 ( \ + 1 ~ i4Cn ) - CE^+1 - 5Cn ) = 2(1) - 2 = 0. 

Note w e l l t h a t {An}, {Sn}, and {£„} a r e s e t s whose d i s j o i n t union i s t h e s e t 
of p o s i t i v e i n t e g e r s . From ( 4 . 7 ) , we see t h a t 

AB, < Cn < ABn+l-

From AG +1 - ,4^ = 1, there are no Cj's between those two A^'s. From (4.6), 
we see that 

AAn + 1 = Bn = ̂ . i - 1* •• 

Thus, 24n - 5n counts the number of Ĉ- T s less than /ln. 

Theorem 4.4 shows that Bn is properly defined in the array of Table 4.1. 
We know from earlier work that (Bn -,An - n) counts the number of C/s less 
than Bn and agrees with the definition of Cn in the array. Since each Bn and 
Cn is followed by some A^, the choice of An as the first positive integer not 
yet used guarantees that the sets in the array cover the positive integers. 

Nota bene: If (24n - Bn) counts the number of Cj's less than An9 it also 
counts the number of Bj's less than n. Further, (Bn - An - n) counts the num-
ber of Cj 's less than Bn; it also counts the number of Bj's less than An, and 
the number of i/s less than n. These follow immediately from the lexico-
graphic ordering by moving backward. Summarizing: 

Theorem 4.5 

(d) (2n - 1 - An) counts the number of Cj's less than n; 

(b) (24n - Bn) counts the number of Sj's less than n; 

(c) (Bn - An - ri) counts the number of A- 's less than n. 

Next, we make application of a theorem of Moser and Lamdek [11]; 
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Theorem (Leo Moser and J. Lamdek9 1954) 

Let f(n) be a nondecreasing function of nonnegative integers defined on 
the positive integers, 

(A) F(n) = f(n) + n, G(n) = f*(n) + n, 

where f*(n) is the number of positive integers x satisfying 0 <. f(x) < n. 
Then, F(n) and Gin) are complementary sequences. Conversely, every two in-
creasing complementary sequences F(n) and G{n) decompose into form (A), with 
f{n) nondecreasing. 

Let f*(n) = Bn - An - n; then 

G{n) = Bn - An and F(n) = An + n = Cn - Bn9 

since Cn = Bn + An + n. Thus, (Bn - An) and (Cn - Bn) are complementary se-
quences. 

Let f*(n) = 2An - Bn; then 

G(n) = 2An - Bn + n = Cn - 2Bn + An = (Cn - Bn) - (Bn - An) 
and 

F(n) = Bn + n = Cn - An = «7„ - Bn) + (Bn - An) . 

Thus, G(n) = (Cn - B„) - (Sn - An) and F(n) = (Cn - Bn) + (£„ - An) are com-
plementary sets. 

Let f*(n) = 2n - 1 - An; then 

G(n) = 3n - 1 - An and F(n) = Cn + n. 

Thus, F(n) and G(n) are complementary sets. We have just proved: 

Theorem 4.6 

The three sequences {An} 9 {Bn}, and {Cn} are such that their disjoint 
union is the set of positive integers. That is, they form a triple of com-
plementary sequences. Further, their differences (Bn - An) and (Cn - Bn) form 
a pair of complementary sequences, and the sum and differences of this pair 
of complementary sequences form another pair of complementary sequences: 

(Gn - An) and (Cn - Wn + An = 2An - Bn + n) . 

5. The r-nacci Numbers 

The r-nacci numbers {Rn} are given by [14] 

RQ = 0, R1 = 1, Rj = 2J'"2, j = 2, 3, ..., v + 1, 
and 

(5.1) Rn + r ^n+r-1 """ -"n + r-2 + * * + -"n • 
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The F ibonacc i numbers {Fn} are t h e case v = 2 , wh i l e t he T r ibonacc i numbers 
{Tn} have v = 3 , and t h e Quadranacci numbers {Qn} have v = 4 . 

We have t h e sequence of i d e n t i t i e s 

F2 + Fh + F, + ••• + F 2 n = F 2 n + 1 - 1, 
( 5 .2 ) r = 2 : 

P - L P 4 - / ? + • • . + / ? - 77 _ I 

(T 2 + ^ 3 ) + (T5 +T6) + - - - + < 2 ? 3 » - l + ^ 3 n ) = ^ 3 n + l " *> 

(5 .3 ) r = 3 : 0T3 + ^ ) + (^6 + T7) + . . . + (T3n + T 3 n + 1 ) = T3 n + 2 - 1, 

T2 + (T, + T5) + (T7 + TQ) + ••• + O ^ + I + ^ n - ^ ) = ^ g - l . 

(e2 + e3
 + «*) + w6 + e7 + e8>. + •" 

+ (e^.2 + «, ,_! + e , j = e,n + 1 - 1, 

(Q3 + Qh + Q5) + (Q7 + Qe + « 9 ) + • • • 

( 5 . 4 ) r> = 4 : 
e 2 + (Qh + Q5+ e6) + w 8 + e9 + e 1 0 ) + ••• 

+ (Sit n + ^4n + l + ^4n + 2) = ^4« + 3 ~ *> 

^2 + #3 + («5 + ^6 + «7> + W 9 + « 1 0 + fin) + ' " 

+ (Qi+n+1 + Qi*n+2 + 6 ^ + 3 ) = Qi+n+n ~ I -

Note that• R1 is never used on the left. Generalizing to the r-nacci num-
bers s we make groups of (r - 1) terms, writing r equations: 

(i?2 + i ? 3 + « . . + Br) + (i?r + 2 + ••• + i ? 2 p ) + . . . 

+ ( ^a - l ) i>+2 + • • • + Rkr) = Rkr+l ~ I» 

(i?3 + i?4 • + • • • + i ? p + 1 ) + ( i ? r + 3 + • ' • + i ? 2 r + 1 ) + • • • • 

+ ( % - l ) r + 3 + ' " • + R]<r+1) = Rkr+2 ~" * »• 

C5 5) ^2 + (-̂ tf + *** + ^ r + 2^ + ( ^ P + 4 + *** + F2r+2) + • •* 

+ (R(k-l)r + k + ' " " + Rkr+2^ = ^kr+3 ~ l j 

i?2 + J?3 + (i?5 + - • • + Rr+3) + (i?r + 5 + « • • + i ? 2 p + 3 ) + '.« • 

+ (R(k-l)r+5 + * * ' + R k r + 3^> =Rkr+k ~ I » 
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(5 .5 ) —cont inued 

R2 + i ? 3 + ••• + i ? r _ x + (i?r + 1 + . . . + i ? 2 r ) + (R2r+2 + . . . + R3r+2) + - - -

+ (Rkr+1 + • • • + R
k r + (r-l)) = Rkr+r " 1 " 

Notice that the proof of Eqs. (5.5) is very simple. In any of the equa-
tions, add 1 = R1 to the left, and observe that 

R1 + R2 + i?3 + ••• + Ri = Ri + 1 for i = 1, 2, ..., p - 1, 

and that R-c + i can be added to the next group of (P - 1) consecutive terms to 
get i?£ + 2, + 1, which can be added to the next group of (P - 1) consecutive terms. 
Repeat until reaching Rjir + i> 

The p-nacci numbers, which are the generalized Fibonacci polynomials of 
[13] evaluated at x = k = 1, again give a unique Zeckendorf representation 
for each positive integer N, 

(5.6) N = a2R2 + a3i?3 + ••• + akRk, 

where a^ £ {0, l}, and a^ai_1a^_2 . . . a^_r + 1 = 0. 

Now let Ai'= {disn} be the set of positive integers whose unique Zecken-
dorf representation has smallest term Rk, k>_ 2 (we have suppressed i?i) , where 
k = i mod r, £ = 2, 3, . .., P + 1. Thus, every positive integer belongs to 
one of the sets A^ by completeness, where the sets A^ are disjoint. 

Theorem 5.1 

Each ai n can be written so that 

ai>n = Ri + ai+i#i+i + ai + 2Ri + 2 + " e + otpi?p, 

where a^ e {0, 1} and £ = 2, 3, ..., p + 1. 

Proof: Let N = a^>n have Rmr+i as the smallest term used in its unique 
Zeckendorf representation. Write Rmr+i as 

Rmr + i - l + Rmr + i-2 + "^"^mr+i-r' 

Then rewrite i?(m_1)r+i as 

•^(m-l)r+i-l +^(m-l)r + i-2 + ••• + R(m-l)r+i - r» 

and continue replacing the smallest term used until the smallest term ob-
tained is i?£, which is one of Z?2, i?3, ..., Rr+1» 
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Theorem 5.2 

The Zeckendorf representation of the positive integers in terms of the 
r-nacci numbers {Rn} is a lexicographic ordering. 

Proof: Write M and N in their Zeckendorf representations, 

n n M =I>A' and N =I>̂ ' 
3 = 2 j = 2 

where Mj, ilfy e {0, l}. If Mj = Nj for all j > m and M m > Nm, then Afm = 1 and 
Nm = 0, and we prove that M > N. Let M* and #* be the truncated parts of the 
numbers M and #. Then 

M* = M2R2 +M3R3 + ... + M ^ >Ra, 

N* = /^2i?2 +^3i?3 + ... +Nm_1Rn_1. 

Since N^Ni-i . . . Ni_r+i = 0, N* is as large as possible when Nm_1, Nm_29 •••» 
^m-r+i a r e nonzero. Then m = rk + i for some i = 1, 2, ..., p. But Eqs. (5.5) 
show that tf* at its largest is i?m - 1, so that N* < Rm £ M*, and thus M > N, 
so that the Zeckendorf representation is a lexicographic ordering. 

6. The Rising Diagonals of Pascal's Triangle 

The numbers u(n; p, 1) of Harris and Styles [15] lie on the rising diag-
onals of Pascal*s triangle with characteristic equation 

XP+± _ XP _ i = o. 

We define u(n; p, 1) = un, where n _> 0 and p 2l 0 are integers, by 

in/ip+l)] 

(6.1) un = u(n; p, 1) = ^ (n "̂  * P V « .> 1, u(0; p, 1) = 1, 
i = o 

where [x] is the greatest integer function, and L is a binomial coeffi-
cient. We note that, if p = 1, 

u(ji - 1; 1, 1) = Fn, 

and if p = 0, 

u(n; 0, 1) = 2n. 

Also, 

We write Pascal's triangle in left-justified form. Then u(n; p, 1) is the 
sum of the term in the leftmost column and nth row (the top row is the zero-
th row) and the terms obtained by starting at this term and moving p units up 
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and one unit right throughout the array. We also have 

(6.2) un = un_1 + Mn.p-i 

with the useful identity, for any given value of p, 

n 
(6"3> J2Ui = Un+P+1 ~ !• 

i = 0 

Now, each positive integer N has a unique Zeckendorf representation in terms 
of {u(n; p, 1)} for each given p, as developed by Mohanty [16]: 

s 

(6.4) N = J^a^ud; p, I), 
i = p 

with as = 1 and fl{ = 1 or 0, p £ i < s. Here, s is the largest integer such 
that Fs is involved in the sum, and u± = u2 = ''' = ̂ p_i = 1 are not used in 
any sum. If a^a^+j = 0 for all i _> p and j = 1, 2, . .., p - 1, then we have 
the unique Zeckendorf representation using the least number of terms. If 
di + a-i + j 2.1 for all i ^p and j = 1, 2, ..., p - 1, then we have a third 
form, which also is a unique representation. 

The results of Mohanty can be restated. Let Ai be the set of positive 
integers whose unique Zeckendorf representation in terms of u(n; p, 1) has 
smallest term un, n £ p , where n = i mod (p + 1), i = 0, 1, 2, ..., p. Then 
every positive integer belongs to one of the sets A^, where the sets A± are 
disjoint. Further, every element in set Ai can be rewritten uniquely so that 
the smallest term used is up + i, i = 0, 1, 2, ..., p, by replacing the small-
est term repeatedly, as, 

un ~ un-l ~*~ un-l-p = un-l "*" un-p-2 "*~ un-2p-2 

= ^ n - l + Un-(p + l) + Wn-2(p + l) + •** + up+i* 

We write a second canonical form by replacing up = 1 by up_1 = 1 whenever it 
occurs, but notice that only set Ap is affected. 

We can establish the identity 

n 
(6.5) 2 ^ u(p + l)k + i = u(p + l)n+i + l ~ 1 

A: = 1 

for each integer i, 0 £ i £ p, by mathematical induction. For each value of 
p, when n = 1, we have, by (6.2): 

u(P + l) -l + i = u(p + l) • l + i+i ~ u p = w ( p + l) -l + i+l ~ !• 

If (6.5) holds for all integers n £ t, then 

t + i t 
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= (u(p + l)t+i + l ~ 1) + u(p+l) t + p + i + 1 ~ * 

= ^(p+i)t + (p+i) + -z:+i " 1 

= u(p + i)(t + i) + i + i " 1» 

the form of (6.5) when n = t + 1, so that (6.5) holds for all integers n by 
mathematical induction. 

We are now ready for our main theorem. 

Theorem 6.1 

The Zeckendorf representation of the positive integers in terms of 

{u(n; p, 1)} 

is a lexicographic ordering. The representation in second canonical form is 
also a lexicographic ordering. 

Proof: Write M and N in their Zeckendorf representation using the least 
number of terms, 

n n 

M =J^MiUi and ff-£ff<Mf, 
i = p i = p 

where Mi9 Ni e {0, 1} and MiMi + ;j = 0 for all i _> p and j = 1, 2, ..., p - 1. 
If Mi = Ni for all i > m and Mw > i\7m, then Mm = 1 and 71/m = 0, and we prove 
that M > N. Let Af* and iU* be the truncated parts of the numbers M and N. 
Then 

M* = AfpWp + Mp+1up + 1 + • • • + Mmum _> ww, 

N* = Npup + Np + 1up + 1 + ••' + ^_i^-i. 

Since NiNi + j = 0 for j = 1, 2, . .., p - 1, TV* is as large as possible when 
Nm_1 is nonzero, but then Nm_2 = Nm_3 = ••• = i!7m_p = 0. The next largest 
possible Ui used is um_p_ls, then wm.2 15etc. Now, we can represent (m - 1) 
as 

m - 1 = (p + l)fc + i, 

where 0 _<_ i <_ p. By (6.5), for any value of (m - 1), we always have 

[(m-l-i)/(p+ 1)] 

N* £ ^ (̂p + Dk + i = um - 1 <. M*. 
fc = i 

Thus, M > N9 and the Zeckendorf representation is a lexicographic ordering. 

Note that the same proof can be used in the second canonical form because 
only the smallest term in the Zeckendorf representation is changed. 
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7. Applications to the Generalized Fibonacci Numbers u[n\ 2, 1) 

Let us concentrate now on the sequence u(n- 1; 2, 1) = un, where we take 
p = 2 in Section 6. We write 

(7.1) u1 = 1, u2 = 2S w3 = 3, and un + 3 = wn + 2 + un. 

Theorem 7.1 

Each positive integer N enjoys a unique Zeckendorf representation in the 
form 

i = l 
where a^ e {0, 1}. 

Each positive integer N can be put into one of three sets A, B, or C ac-
cording to the smallest uk used in the unique Zeckendorf representation of 
N, by whether k = 1 mod 3 for A, k = 2 mod 3 for B, or k = 3 mod 3 for C. 
Let A = {^n}, 5 = {Bn}, and C = {CVJ be the listing of the elements of A9 B, 
and C in natural order. Note that we can rewrite each unique Zeckendorf rep-
resentation by changing only the smallest term used to make a new form where 
the smallest term appearing is u±, u29 or u3. If the smallest term appearing 
is uk, we replace the smallest term repeatedly: 

+ u~, 

l3m+l ~ U3m + U3m-2 U3m + U3m- 3 + U3m-5 

+ U 1 5 

^3m+l + U3m-1 " U3m + 1 + U 3 m - 2 + U3m-h 

l3m+l + U3m-2 + " " * + W 2 ' 

We can summarize as 

Theorem 7.2 

Each member of set /L has a representation in the form 

An = 1 + a2u2 + a3u3 + ••• + amuOT, a^ e {0, l}; 

each member of set B has a representation in the form 

Bn = 2 + a3u3 + a ^ + ••• + amum9 a^ e {0, l}; 

and each member of set C has a representation in the form 

Cn = 3 + a ^ + a5u5 + ••• + amum9 ai e {0, 1}. 
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There are some instant results: 

(7.2) Bn - 1 = A j 9 Cn - 1 = Bj . 

Now, let H = {Hn} = A U C, where the elements of H are listed in natural 
order. We write the second canonical representation for sets' A9B9 and C, by 
replacing u1 = 1 by u0 = 1 in the representation of An but leaving Bn and Cn 
represented as in Theorem 7.2. Let / be the transformation that advances by 
one the subscripts of each of the summands un for each representation that is 
in second canonical form. Let /* be the transformation that advances the 
subscripts by one of each summand un used in the Zeckendorf representation 
of N. 

Theorem 7.3 

J?* fit 

Proof: It is clear that An —-—*~$n —'—*" C?i by the lexicographic ordering 
theorem (Theorem 6.1). Consider the sequence 1, 2, 3, ..., Hn; then, since 
H and B are complementary sets, we have 

Hn ~ n + (number of Bj's less than Hn). 

Thus, by Theorem 6.1, 

(number of Bj's less than Hn) = (number of Aj's less than n) 

= Cn - Bn - n. 

Here we have assumed the equivalence of the definitions of An,Bn, and Cn and 
the following (see [17]): 

An = smallest positive integer not yet used, 

Bn = An + n, 

^n=^n*Hn. 

We now consider the sequence 1, 2, 3, ..., Bn; then 

Bn - n + (number of BjHs less than Bn) . 

From j - Bn - n = An and Theorem 6.1, we conclude 

(7.3) HAn + 1 = Bn, 

but we also get that 

. An = (number of A^s less than Cn) 

from Theorem 6.1. From 1, 2, ..., Cn, then 

Cn = n + (number of Aj's less than Cn) + (number of Bj1s less than Cn) 
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= n + An + (number of Sj's less than Cn), 
or 

(number of B^s less than Cn) = Cn - (An + n) = Cn - Bn = Hn. 

We therefore conclude from Cn - 1 = B • that 

(7.4) B ^ + 1 = Cn. 

From Theorem 6.1, 

(number of Bj's less than Cn) = (number of A^s less than Bn) = Hn. 

Therefore, since Bn - 1 = A-, we conclude 

(7.5) ^ + 1 = Bn. 

From (7.5) and (7.3), we conclude 

(7.6) HAn = ̂  . 

We would normally have that ^4n ^ Bn and An—
J—+Bn - 1 = HA = AH . Also, 

Bn —-—- Cn = H3 . But, C n—-— - Aj for some j , so that set N under f goes into 

set H. From Theorem 6.1, An^—*HAn = Bn - 1 = AH^ and Bn~^^HBn = Cn> and 

C„ ——- #£, . Now, Ec - AB as B and B are complementary, and these are the 

only elements left. 

From (7.5), we conclude that 

(7.7) AAn + 1 = BHn and ACr + 1 = B3n , 

since H3^ = Cn. Since HAri + 1 = Bn, 

(7.8) ff^ + 1 = BHn =AHB/ 

Note that, if we remove all #sn = Cn from the ordered sequence Hn9 then 
all we have left are the An, and these are HHn = An . Thus, 

(7.9) AAn + 1 = Bffn . 

Putting i t together, AAn + 1 = B Hn and B#rt + 1 = Cn imply t h a t AA^+l = Cn 4- 1, 
s i n c e Cn + 1 = ^ a lways . Thus, 

( 7 . 1 0 ) i4 A n + 1 - A A n = 3 . 

From B^ + 1 = Cn, one concludes that, because B and B are complementary, 
55vi + 1 4- CJ , and since no two BjTs are consecutive, BBn + 1 = Aj. From 

4^ + 1 = 5 ^ and BK + 1 = ̂  = Ac+l, 

we have 

(7.H) ^ + 1" ACn = 2. 
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We consider 1, 2, 3, ..., Hn. Then 

Hn = n + (number of Bj's less than #„), 
and 

Cn - Bn - n = (number of #jfs less than #n) 

= (number of Ajns less than n) = (number of C•Ts less than i4n). 

Therefore, 

C5 - 5Bn - Bn - (number of CjXs l e s s than .45 ) . 

But , #Sn = Cn9 so #s?i - Bn =•- Cn - Bn = Hn. T h e r e f o r e , we conclude t h a t 

(7 .12) CUn + 1 = A B n . 

No two CjTs have a difference of 2. Now, can ̂ 5 n + 1 = B3-l The answer is 
no, since AAn + 1 = Bn and H and 5 are complementary sequences. Then AByi+\ -
Asn 1 1 so that CBn+i~ CBn >_ 3, and (7.10) implies that CAn+\ - CA = 6, while 
(7.11) implies that ^ n + i ~

 ccn
 = 4-

By considering the mappings under /*, we now conclude that: 

Theorem 7.4 

AAn+i"AAn = 3 , ABH + l-ABn = 1 , ACn+l-ACn = 2 ; 

BAn + l " 5 4 n
 = 4 , 5 3 n + l " 5 3 n

 = 2 » BC,,+ l ~ BCn
 = 3 5 

Q „ + l ~ ^ n
 = ^» ^ 5 n + l ~ ^Bn ~ ^ ' ^Cn+1 "" Ccn

 = 4 . 

Finally, we list the first few members of A9 B, C, and H in Table 7.1. 

TABLE 7.1 

n 

1 
2 
3 
4 
5 
6 

^n 

1 
4 
5 
7 
10 
13 

Bn 

2 
6 
8 
11 
15 
19 

#n 

1 
3 
4 
5 
7 
9 

Cn 

3 
9 
12 
16 
22 
28 

Notice that we may extend the table with the recurrences: 

Cn + An = /L5̂  , 

#n + %n ~ Cn9 
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An + IL n + Dn — C ĝ  , 

An
 + Cn + Bn = ^£r • 

We have two corollaries to Theorem 7.4: 

Corollary 7.4.1 

(Number of A^s less than n)=Cn-Bn-n= f(n), 

(Number of B^s less than n) = Cn - 2An - 1 = g(n) 9 

(Number of C-j's less than n) = 3Bn - 2Cn = h(n) . 

Proof: /(l) = 0 and 

jfWffl + 1) - f(Am) = 1, 

/(5n + 1) - f(Bm) = 0, 

/(Cm + 1) - /(O « 0. 

Thus, f(n) increments by one only when n passes Am9 so that f(n) counts the 
number of Aj's less than n. 

Next, g{\) = 0, and 

g(Am +• 1) - #0U) = 0, 

g(Bm + 1) - g(Bm) = 1, 

^ + 1) - g(Cm) = 0. 

Thus, g(n) increments by one only when n passes Bm9 so that g(n) counts the 
number of Bj's less than n„ 

Similarly, /z(l) = 0, and 

h(Am + 1) - h{Am) = 0, 

h(Bm + 1) - fctfj = 0, 

h(Cm + 1) - MO = 1. 

Thus, h{n) increments by one only when n passes Cm, so that h(n) counts the 
number of Cj !s less than n, 

Corollary 7.4.2 
p, m e A; 

Let um + 1 - um = <[ q, m e B; 
r, m £ C. 
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Then 

um = (Cm - Bm - m)p + (Cm - 2Am - l)q + (3Bm - 2Cm)r + u±. 
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