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1. Introduction 

The object of this note is to synthesize information relating to certain 
polynomials forming the subject matter of [1], [2], [3], and [4], the nota-
tion of which will be used hereafter. In the process, a verification of the 
roots of the Fibonacci and Lucas polynomials obtained in [2] is effected. 

Polynomials An(x) were defined in [3] by 

'A0(x) = 0, A1(x) = 1, A2(x) = 1, A3(x) = x + 1 and 
(1.1) 

. A n \X ) = XA n _ 2 \W ) ~ A n _ ̂  \X ) , 

Squares of the roots of 

(1-2) — = 0 
Au (x) 

(of degree 2n - 2) , associated with the Chebyshev polynomial of the second 
kind, Un(x) , were shown in [4] to be given by 

(1.3) 4 cos2 ~[ (i = 1, 2, ..., n - 1). 

The actual roots may be written 

(1.4) ±2 sin (n ~n
i)TF (i = 1, 2, ..., n - 1) 

or, what amounts to the same thing, 

(1.5) ±2 sin T ^ (i = 1, 2, ..., n - 1). 

Proper divisors were defined in [4] as follows: "For any sequence {un}, 
n _> 1, where w„ e Z or wn(#) e Z ( x ), the proper divisor wn is the quantity 
implicitly defined, for n ̂  1, by w1 = wx and un = max{ci: d|un and g.c.d. 
(ds wm) = 1 for every 77? < n}.M 
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For {An(x)} 9 the first few proper divisors are: 

w1(x) = 1, w2(x) - 1, w3(x) = x + 1, wh(x) = #, ic?5(#) = x2 + x - 1, 

wQ(x) - x - 1, w7(#) = x3 + x2 - 2x - 1, ZJ8 (x) = x2 - 2, 

w3(x) = x3 - 3x + 1, w10(x) = x2 - x - 1, 

W1] LGE) = x5 + x1" - 4x3 - 3x2 + 3x + 1, w12(x) = x2 - 3. 

From the definition of proper divisors, we obtain (see [3]) 

(1.6) An(x) = n wd(x). 
d\n 

2. Complex Fibonacci and Lucas Polynomials 

Hoggatt and Bicknell [2] defined the Fibonacci polynomials Fn(x) by 

(2.1) F±(x) = 1, F2{x) = x, Fn+1(x) = xFn(x) + Fn_1{x) 

and the Lucas polynomials Ln(x) by 

(2.2) L1(x) = x, L2(x) = x2 + 2, £n + 1(ff) = ̂ n (a:) + Ln_1{x). 

Table 1 in [2] sets out the Lucas polynomials for the values n = 1, 2, 
..., 9 (while Table 2 of [7] gives the coefficients of the Lucas polynomials 
as far as L11(x)) . Using hyperbolic functions, Hoggatt and Bicknell ([2, p. 
273]) then established complex solutions of the equations 

F2n{x) = 0, F2n+1(x) = 0, L2n(x) = 0, and L2n+1(x) = 0, 

which are of degree In - 1, 2n, 2n, and In + 1, respectively. 

Suppose we now replace # by ix (-£ =/-T) in (2.1) and (2.2). Designating 
the new polynomials by F*(x) and L*(x), we have, from F2n(x) = Fn(x)Ln(x) : 

(2.3) F*n(x) = F* (*)£*(*). 

Referring to the details of Table 1 in [2], we can tabulate the ensuing 
information where, for visual ease, we have represented the polynomials An(x) 
and the proper divisors wn(x) of An(x) by An and wn9 respectively (see Table 
1, p. 221). 

Summarizing the tabulated data, we have 

(2.A) F*n(x) = (-l)n-lUhn(x) (n>l), 

(2.5) *t„+i<*> = ( - D \ t 2 W = (-l)B(F2„(ar) ( n > 0 ) , 

(2.6) i*„(«) = (-D"BBn(x) (nil), 

(2.7) i$n + i(ar) = (-DnixBH2n+1)(x) = (-l)"ia:$2n(a;) (w >. 1), 
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TABLE 1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

F*(x) n 

iAn 

-iAQ 

iA12 

-iAls 

: 

pven F*(x) n 

A2 

-A6 

Aio 

-Alk 

Al8 

odd L*(x) n 

-WQ 

^ 1 6 

even 

-WQW2^ 

^ 3 2 

; 

L*(x) n odd 

ixw\ 

-1XW\2 

VXW2 0 

-%XW2Q 

%XW\2Wo>$ 

where the symbolism ^ 2n(x) and §2n(x) of Hancock [1] has been introduced in 
(2.5) and (2.7). For the Bhn (x) notation given in terms of proper divisors, 
see [4, p. 248], Degrees of F* (x) and L*(x) are, of course, the same as those 
of the corresponding Fn(x) and Ln (x). 

The results of (2.4) and (2.5) follow directly from (1.4) of [4] and the 
well-known fact: 

[(n-D/2] 

F„ . 
[(w-D/2] . . -. 

To establish (2.6) and (2.7), we consider the evenness and oddness of n 
separately and invoke (4.1) of [4]. 

n even {n = 2k) J2k (x) F*k (x) by (2.3) 

(-l)k-xiAhk{x) 
by (2.4) 

(x) 
(-D' 

n odd (n = 2fe + 1): L*k+1(x) 

Akk(x) 

nk+iW 

= (~l)kBsk(.x) by (4.1) of [4], 

by (2.3) 

(-D2kiAf k+h (X) 

i-l)kAhk+2{x) 
by (2.4), (2.5) 

= (.-l)kixBBk+h(.x) by (4.1) of [4]. 
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From (2.6) and (2.7), an explicit formula for Bhn(x) may be obtained by 
appealing to the known expression for Ln(x): 

ln/2] . •.. 

f?o n - A a ) 
Arguing for Al¥n + 2(.2x) = U2n(x) (the Chebyshev polynomial of the second 

kind) as for Ahn (x) in [4], we derive the In roots of 

(2.8) A^n+2(x) = 0 

to be ±2 cos -^———j- (•£ = 1, 2, . . . , ri) or, equivalently, 

(2.9) ±2 sin g + {j • \ (i = 0, 1, 2, ..., « - 1). 

Next, consider the roots of 

(2.10) Bgn(x) = 0. 

From [4], these are the roots of = 0 excluding those belonging to 

the set of roots of (1.2). Consequently, by (1.4), the roots of (2.10) are 

• 0 . {In - i)i\ ,. . 0 0 .. ,. . . , , , 4_0 2(n - i)iT ,. ±2 sin : (t = 1, 2, . . . , 2n — 1) diminished by ±2 sin ; to -
4n 4n 

1, 2, ..., n - 1). Calculation yields the remaining roots to be 

(2.11) ±2 sin ( 2 ^ 1)TT to = 0, 1, 2, ..., n - 1). 

Finally, in our analysis of the roots of F*(x) = 0 and L*(x) = 0, we find 
from [1] that the In roots of 

(2.12) $2nto) = 0 

are ±2 sin 7; ;—r = ±2 sin TT - -̂  •—7- , % = 1, 2, . . . , n, that is, after man-
2n + 1 \ 2n + 1 / 

ipulation, 

(2.13) ±2 sin 2 ^ T T to = 1 > 2, ... , n) . 

The roots of F*n to) = 0:> ̂ fn+ito) = 0, Lfn to) = 0, and L%n + 1(x) = 0 are, 
respectively, those given in (1.5), (2.9), (2.11), and (2.13). See also [8]. 

Akn(x) 
It must be noted that the In - 2 roots in (1.5) relate to = 0 in 

(1.2), so A^n{x) = 0 = F*n(x) in (2.4) has {In - 2) + 1 = In - 1 roots, one 
of these,roots being x - 0. Also note the zero root associated with (2.7). 
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Verification of the Hoggatt-Bicknell roots is thus achieved by complex 
numbers in conjunction with the properties of the polynomials An(x). 

3. The Polynomials A2n+1[x) 

So far, the odd-subscript polynomials A2n+1(x) of degree n have not been 
featured. As mentioned in [4, pp. 245, 249], 

(3-D A2n-nM = ?»<*> 

in the notation of [1], where 

(3.2) fn(x) =A2n + 2(x) -A2n(x) = (-l)nfn(-x) = (-l)M2n+1(-*). 

For instance, 

f5(x) = A12(x) - A10(x) = x5 - 4x3 + 3x - (xk - 3x2 + 1) 

= -(-x5 + x* + kxz - 3x2 - 3x + 1) = -Ai:L(.-x) 

= (-n575(-*). 
Using the information given in [1] for the n roots of fn(x) = 0, we have 

that the n roots of 

(3.3) A2n+1(x) = °  

9V TT 

(3.4) 2 cos 2 ^ l 1 (i = 1, 2, ..., n). 

Thus, the two roots of A5(x) = fz(x) = x2 + x - 1 = 0 are 

, 2 cos — 1= -2 cos —1. 2TT 4TT 
2 COS —r 

Following Legendre [6], Hancock [1] remarks that the equations 

(-l)nfn(-x) = fn(x) 

constitute a type of reciprocal equation obtained by substituting z = x + — 

* 2 n + 1 - 1 0. 
x - 1 

In [3, p. 55] it is shown that 

(3.5) A2n(x) • * ' * , 
s2 - t2 

where s2 = -jOc + /x2 - 4) and t2 = -jte - /x2 - 4) . Then 
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Akn+2^ = A2n+2^ " A2n ̂  OHUSing (3.5) 

= (A2n+2^ ~ A2n^y>(<A2n+2^ + A 2 n ^ ) 

= / n (#)•/„ G&) (Hancock [1]) 

= / n ( x M 2 n + 1 » by (3.1), 

where we note as in [4, p. 248] that our A2n(x) is HancockTs An_1(x). Thus, 

(3.6) /BW=V2W^+iW-
so that the fn (x) are expressible in terms of proper divisors. As an exam-
ple, A1Q(x) = w6(x)w18(x)As(x), i.e., 

(3.7) f^(x) = A1Q(x) - AQ(x) =w6(x)w1Q(x) = (x - 1) (x3 - 3x - 1). 

4. Concluding Comments 

(a) The 2n roots of each equation 

(4.1) Ann+iW = ("D* s e c 2 ^ 1 ( i = l > 2> ' " n) 

are shown in [1] to be 

(4.2) ±2 sin ̂  1 (i = 1, 2, ..., n). 

Combining (2.5), (2.7), (2.12), (2.13) (in the equivalent form), (4.1), 
and (4.2) we see that 

(4.3) Tx « o and^n+1(a:) - sec 2 ^ 7 = 0 (fc = 1, 2, .. . , n) 

of degree 2n, for a given n and a given value of k have the roots 

±2 sin 2 ^ T T (fe = 1, 2, ..., n) 

/ 2TT 4TT \ 
in common. For example, i f n = 2 we f ind t h a t ±2 s i n a ( a = -=-, ~F~ ) a r e roots 

L*(x) V * 7 

Qf —. = o and F%(x) - sec a = 0. 
%x 5 

(b) It is observed in [1] that the curves 

y = fn(x) = A2n+2(x) - A2n(x) [(3.2)] (n =1,2,...) 

all pass through the point with coordinates (2, 1), and through one or the 
other of the points (0, 1), (0, -1). Examples for easy checking are y = f^(x) 
given in (3.7), and y = f5(x) appearing after (3.2). 



1982] ROOTS OF RECURRENCE-GENERATED POLYNOMIALS 225 

(c) Mention must finally be made of the very recent article by Kimber-
ling [5] on cyclotomic polynomials which impinges on some of the content 
herein. Among other matters, one may compare Table 2 of [5] with Table 1 of 
[2]. 

If the irreducible divisors of the Fibonacci polynomials Fn(x) given by 
(2.1) are represented by ^d(x) where d\n9 then by [55 p. 114], 

(4.4) Fn(x) = II %(x). 
d\n 

Allowing x to be replaced by ix in the polynomials ^n(x) occurring in Kimber-
lingTs Table 2, and writing the polynomial corresponding to ^n(x) as ^*(x) , we 
find using [8] that 

(4.5) S^Oc) = F*(x) p prime 

(4.6) S$n(a) = (-l)iHiin)w^n(x) (« > 1), 

where ty(n) is Euler's function and,by [4], 

(4.7) deg. wn(x) = y <Kw). 

While the proof of (4.5) is straightforward, that of (4.6) requires some 
amplification. Now 

F*n(x) = (-l)n-1Ul+n(x) which is (2.4) 

II V%(x) = (~l)n"1ix n wd{x) by (4.4) amended and [4, p. 244] 
d\2n d\kn 

(4 .8 ) n V*(x) = (-l)n'1i n w
d(x) n 1 1 s i n c e wh^x) = x-

d\ln d\kn 

Apart from the sign (+ or - ) , the highest factor &*„(x) on the left-hand 
side of (4.8) must equal the highest factor whn(x) on the right-hand side of 
(4.8). This sign must, on the authority of (4.7), be 

whence (4.6) follows. 

For example, 

F* = i(xh - 4x3 + 3x) = ix(x2 - l)(x2 - 3) = V*(x) {-V*(x)){-V*(x)) 

= iA12 = ix{x + l)(x - l)0r2 - 3) = iwh (x)w3 (x)we (x)wlz(x) , 

whence 

g*(a?) = -w12(x) = (-1)^(12 )ZJ12(X). 

Kimberling's article opens up many ideas which we do not pursue here. 
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This concludes the linking together of material from several sources. 
Consideration of the polynomials An(x) does indeed enable us to encompass a 
wide range of results. 
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/ 
HOGGATT READING ROOM DEDICATION 

\ 

On April 30, 1982, the Department of Mathematics at 
San Jose State University dedicated the 

VERNER E. HOGGATT, JR. READING ROOM. 

The room, opposite the offices of the Department of 
Mathematics, houses a splendid research library and 
various mathematical memorabilia. At the ceremony, 
Dean L. H. Lange of the School of Sciences talked 
of his long association with Professor Hoggatt and 
about Fibonacci numbers. A reception followed for 
faculty members and guests. Among the guests were 
various friends and associates of Professor Hoggatt, 
a number of whom are active in carrying on the work 
that Professor Hoggatt started with Th<i Fibonacci 
Qj±aAt2AZy. Mrs. Hoggatt and her daughters attended 
the dedication ceremony, and Mrs. Hoggatt was pre-
sented with a portrait of her late husband. 

j 


