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1. Introduction 

A friend of ours, on hearing about a "new" system for betting in roulette, 
did some initial investigating with pencil and paper, thought it looked good, 
and proceeded to try it out in Las Vegas. With a set goal and a capital he 
was willing to risk, he played the system religiously ... and won! This was 
the incentive for our more thorough investigation of the system. The outcome 
of the investigation may be guessed in advance; if not from a mathematical 
standpoint, surely from the facts that: 

1. we have decided to publish the findings, and 
2. neither of us is yet wealthy, 

Since roulette is a game of (presumably) independent trials and since the 
house holds an edge on each trial, it is a foregone conclusion (see, for ex-
ample, [1]) that there can be no betting scheme which gives the bettor a pos-
itive expectation. Nonetheless, there is a certain enticement to a scheme 
which is designed for use in a nearly "even" game of independent trials and 
which promises, by its nature, to leave the bettor ahead by a certain amount 
after the completion of a little routine which seems unavoidably destined for 
completion. Betting on red or black in roulette (probability of success with 
an American wheel is 18/38 since there are 18 red numbers, 18 black numbers, 
and, yes, two green numbers—-0 and 00) provides the nearly "even" game. The 
scheme for betting in the game begins with a prechosen but arbitrary sequence 
of numbers b19 b2, . .., bn% which we shall call the betting sequence. The 
algorithm to be followed is then: 

1. (Make bet b) b = b± + bn if n >. 2. b = b1 if n = 1. 
2. (Decrease betting sequence after a win) If win, then 

2.1. (Scratch outer numbers) Delete the values b1 and bn from the 
betting sequence. 

2.2. If sequence is exhausted, then halt. (Completion of a betting 
cycle) 

2.3. Decrease n by 2. 
2.4. (Relabel sequence numbers) Renumber remaining betting sequence 

to b19 ..., bn. 

263 
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3. (Increase betting sequence after a loss) If lose, then 
3.1. Increase n by 1. 
3.2. (Attach current bet to sequence) Set bn = b. 

4. Repeat, starting at step 1. 

As an example, suppose a bettor begins with the sequence 1, 2, 3, 4, 5. 
His first bet would be 6 units (1 + 5). If he wins that bet, his betting 
sequence becomes 2, 3, 4, and his next bet would be 6 units again (2 + 4). 
Given a loss of this second bet, his betting sequence would become 2, 3, 4, 
6, and 8 units would be bet next. A complete betting cycle is illustrated 
below: 

Trial No. Betting Sequence Bet Outcome Financial Status 

1 1, 2, 3, 4, 5 6 Win +6 
2 2, 3, 4 6 Lose Even 
3 2, 3, 4, 6 8 Lose -8 
4 2, 3, 4, 6, 8 10 Win +2 
5 3, 4, 6 9 Win +11 
6 4 4 Lose +7 
7 4,4 8 Win +15 

cycle complete (betting sequence exhausted) 

Now the invitation to wealth is clear. With a nearly even chance of win-
ning any bet and with the system scratching two numbers from the betting se-
quence on every win while adding only one number to the sequence on a loss, 
how can we fail eventually to exhaust the betting sequence? And sequence 
exhaustion beings with it a reward equal in monetary units to the sum of the 
numbers in the original betting sequence (easily proved). The only hitch in 
this otherwise wonderful plan is that there may come a time when we cannot 
carry a betting cycle through to completion simply because we do not have the 
resources to do so; i.e., we cannot cover the bet required by the system. 
(House limits on bets may also impose on our scheme, but these are not con-
sidered here.) 

It turns out that this system is an old one called either Labouchere or 
the cancellation system. Mention is made of it (in a dismissing way) in the 
writings of professional gamblers (see [4], [6], [7], and [8]) and (in a pro-
motional way) in one book [5], where the author claims to have won $163,000 
using an anti-Labouchere system (turn around the win and lose actions) in a 
French casino in 1966. 

Here we investigate Labouchere by first probing (in Section 2) a system 
which is somewhat similar to Labouchere, but more amenable to mathematical 
analysis. This gives a forecast of results to come. Next (Section 3) we 
look at Labouchere in a setting where there is no limit on the bettorTs cap-
ital. Here the probabilities of cycle completion become clear. Finally, in 
Section 4, we simulate (mathemetical analysis seems very difficult) various 
situations under which Labouchere is applied with finite working capital. 
The intent is to display how the control of certain parameters (initial cap-
ital, goal, length of initial betting sequence, size and order of values in 



1982] ANALYSIS OF A BETTING SYSTEM 265 

the original sequence) can impact the outcome statistics (frequency of goal 
achievement, mean bet size, mean number of bets to a win, mean earnings). 

2. Analysis of a Simpler Scheme 

Consider for a moment the popular double-up or Martingale betting system 
wherein the bettor doubles his wager after each loss and returns to his orig-
inal bet after each win. This can be considered somewhat close to a Labou-
chere scheme by viewing the Martingale bettor as starting with a single num-
ber in his betting sequence, adding to the sequence any bet that he loses, 
betting the sum of the whole sequence, and deleting the whole sequence after 
any win. Thus, any win completes a betting cycle. 

What "control" does the Martingale bettor have over his fortunes? Sup-
pose the probability of success on any trial is p and let q- 1-p. For sim-
plicity, we let the gambler's initial capital be 

CQ = (2k - l)b 

for some positive integers b and k5 where b is the amount to be bet initially. 
We shall also say that the gambler's profit goal is G and, again for simpli-
city, set G - mb, where 0 < 7?? < 2k. Under this arrangement, the bettor must 
experience m successful trials (complete betting cycles) to achieve his prof-
it goal, while k consecutive losses will ruin him (i.e., leave him with in-
sufficient resources to continue with the Martingale scheme). Thus, 

Prob[achieve G] = (1 - qk)m. 

We note immediately that, given the same capital, the greedier gambler (the 
one with a larger profit goal) has a smaller probability of achieving his ob-
jective, but that the amount by which this probability diminishes with in-
creased ambition depends on the bettor's initial capital. 

Now assume that the gambler will achieve his profit goal G = mb9 and let 
X19 J2, . . . , Xm be random variables whose values are determined by the number 
of trials needed to complete cycle 1, cycle 2, ..., cycle m, respectively. 
Then the expected number of trials to achieve G (given that G will be achieved) 
is 

E[x1+x2 + --- +xj = ^ - E E i W
i - 1 - ^ - i ; * * * - 1 . 

1 - qk j = i i = i I - qk ^ = 1 

To get a feeling for these numbers, we present some examples in Table 1 where 
we assume that p = 18/38 (as in roulette) and that in each case shown the 
initial amount wagered is 10 units (i.e., b = 10). 

The main observations that we wish to make from Table 1 are that under a 
Martingale system a bettor has the following "controls": 

1. He can adjust his probability of achievement of the profit goal, £, 
by adjusting his goal-to-initial capital ratio (G/C0) . This apparent 
dependence is shown dramatically in Figure 1, a plot of Table 1 data. 
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TABLE 1 

Expected Results Using a Martingale Betting Scheme 
with Initial Bet $10 and p = 18/38 

m 

5 
4 
3 
10 
5 
9 
8 
4 
2 
7 
6 
3 
5 
4 
2 
1 
3 
5 
4 
2 
1 
3 
2 
1 
1 

k 

3 
3 
3 
5 
4 
5 
5 
4 
3 
5 
5 
4 
5 
5 
4 
3 
5 
6 
6 
5 
4 
6 
6 
5 
6 

Profit 
Goal (£) 
£= 10m 

50 
40 
30 
100 
50 
90 
80 
40 
20 
70 
60 
30 
50 
40 
20 
10 
30 
50 
40 
20 
10 
30 
20 
10 
10 

Initial 
Capital (C0) 

C0= (2k- 1)10 

70 
70 
70 
310 
150 
310 
310 
150 
70 
310 
310 
150 
310 
310 
150 
70 
310 
630 
630 
310 
150 
630 
630 
310 
630 

Prob[achieve G] 
PG = (l~qk)m 

,455 
.532 
,623 
.662 
.671 
.690 
.719 
.727 
.730 
.749 
.781 
.787 
.814 
.848 
.852 
.854 
.883 
.898 
.918 
.921 
.923 
.938 
.958 
.960 
.979 

Expected 
Number 

of Trials 
to achieve G 

7.995 
6.396 
4.797 
21.350 
9.612 
19.217 
17.082 
7.690 
3.198 
14.947 
12.811 
5.767 
10.676 
8.541 
3.845 
1.599 
6.406 
11.348 
9.078 
4.270 
1.922 
6.809 
4.539 
2.135 
2.270 

Expected 
Earnings 
per Play 

GPG-C0(l-PG) 

-15.40 
-11.48 
-7.70 
-38.58 
-15.80 
-34.00 
-29.59 
-11.87 
-4.30 
-25.38 
-21.03 
-8.34 
-16.96 
-13.20 
-5.16 
-1.68 
-9.78 
-19.36 
-14.94 
-6.07 
-2.32 
-10.92 
-7.30 
-2.80 
-3.44 

2. He can adjust his expected time for achieving his goal. The general 
rule here seems to be that a need for more cycles to achieve the goal 
increases expected achievement time as does having a larger initial 
capital. That is, increasing either k or m increases the expected 
number of trials for gaining G. 

3. The more a gambler is willing to risk (C0) and the greedier he is 
(G)9 the larger his expected loss. 

We shall see shortly that: the Labouchere bettor has the same sorts of con-
trols over his fortunes, but that his setting provides for more controls, in 
that he also has a choice of betting sequence. This is the real complicat-
ing factor in the analysis of Labouchere. We turn now to some of the mechan-
ics of the cancellation scheme before going into the full simulation of prac-
tical situations. 
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FIGURE 1 

A plot of the Martingale results in Table 1 showing the relationship 
between probability of goal achievement and goal-to-initial-capital 
ratio. Dashes connect points with same initial capital. 

3. The Case of Infinite Capital 

Throughout this section we shall assume that our Labouchere bettor really 
does not care what sorts of temporary losses he incurs, for he has enough 
money to cover any loss. His only real concern is how long it will take him 
to recover the loss by completing his betting cycle. He asks then for the 
probability that he will complete a cycle in t or fewer trials. 

Suppose the initial betting sequence consists of n numbers. Let-w rep-
resent the number of wins in t trials and let £ = t - w represent the number 
of losses. In order for a betting cycle to be completed on trial t we must 
have 

(1) 2w > I + n and 2{w - 1) < + n. 

That is, since two numbers are deleted from the sequence with each win and 
only one number added for each loss, the first inequality gives a condition 
for sequence exhaustion and the second assures that the sequence was not ex-
hausted on the (£- l)st trial. Together, these yield 

(2) i(£ + n) <_w < |-(t + n + 2) , 

Because w is an integer and the two extremes of this inequality differ by 
only 2/3, there can be at most one solution w for given t and n. In fact, 
since t and w are also integers, the only situation in which no such w exists 
will be that for which 

1 
(t + n) = m + 1_ 

39 
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where m is an integer; i.e., 

t = 2n +• 1 (mod 3) . 

Hence, i f t = 3k + i and n = 3/2 + j , where 0 <. f s j <. 2 , then 

\ k + h, if i = j = 0 

I fc + 7z + 1, otherwise, unless £ + j = 1 (mod 3), 
^ where there is no solution. 

From the way we set up our conditions to find w, it is seen that not every 
permutation of w wins and t - W losses will result in cycle completion on 
trial t . (Some will dictate earlier sequence exhaustion.) However, every t-
trial cycle completion with an initial betting sequence of n numbers will 
involve exactly w wins where w is determined as above. 

Our question now becomes: How many permutations of w wins in t trials re-
sult in cycle completion on trial tl To address this, we make our setting 
more definite, and note simply that other settings are similar. We take the 
case where there are five numbers in the original betting sequence (n = 5). 
In this case our analysis above shows that it requires exactly 

w = k + 2 

wins to complete a betting cycle in t = 3k + i trials, providing i = 0 or 1. 
It is impossible to complete a cycle in t trials if i = 2. 

Figure 2 shows a graph in the u&-plane of the inequalities (1), which 
here become 

2w _> % + 5 and 2(w - 1) < I + 5. 

The lines t = w + £ are shown at various levels. We consider a random walk 
on this graph where each loss corresponds to a positive unit step vertically 
and each win corresponds to a positive unit step horizontally. Beginning at 
the origin, we hope to follow the determined path into the region described 
by the inequalities, since this corresponds to completing a cycle. Hence, we 
call this region the completion zone. 

For the purpose of restating our question in this new context,let us say 
that a path in our random walk from the origin to some point (a, b) is per-
missible if it never enters the completion zone before reaching (a,Z?). Then 
our question asks how many different permissible paths lead to the point 

(k + 2, 2k + i - 2), k >. 1, i = 0 or 1. 

Now a recursion formula that answers the question is easily derived from 
noticing that any path leading to (a9b) in this random walk must have as its 
last step either the step from (a- 1, b) to (a, b) or from (a, b- 1) to (a,Z?). 
So denoting the number of permissible paths to (a, b) by N(a9 b), we have 

N(a9 b) = N(a - 1, b) + N(a9 b - 1). 
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FIGURE 2 

The Random Walk Setting with n = 5 

This formula iss of course, subject to the provision that neither (a - 1, b) 
nor (a, b - 1) is in the completion zone, for then the path to (a, b) would 
not be permissible. So, for example, if (a, b - 1) is in the completion zone, 
then N(a9 b) = N(a - 1, b). 

Putting this in terms of t and w rather then w and I and denoting the 

number of permissible ways to achieve w wins in t trials by < >, our basic 

formula becomes 

M:iWV} 
with the same provision that if either t - 1 and W - 1 or t - 1 and w deter-
mine a point in the completion zone, then the corresponding number is not 
added in the formula. These numbers clearly act somewhat like binomial coef-
ficients and, in fact, we get a modification of Pascal's triangle as shown in 
Figure 3. There the circled items represent numbers corresponding to points 
in the completion zone and, consequently, are not added in the derivation of 

the succeeding row. Now we have, for example, that < , > = 83; that is, there 

are 83 permissible paths to the point (4, 5) in Figure 2. This, in turn, is 
equivalent to saying that there are 83 sequences consisting of four wins and 
five losses which lead to completion of the betting cycle in exactly nine 
trials. 
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t_ 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 

. 1 1 

1 2 1 

1 3 3 (T). 
1 4 6 (?) 0 

1 5 10 6 0 0 

1 6 15 16 (?) 0 0 

1 7 21 31 @ 0 0 0 

1 8 28 52 31 0 0 0 0 

1 9 36 80 83 (3j) 0 0 0 0 

1 10 45 116 163 (83) 0 0 0 0 0 

1 11 55 161 279 163 0 0 0 0 0 0 

1 12 66 216 440 442 (163) 0 0 0 0 0 0 

FIGURE 3. 

These counts of the number of ways to complete a cycle in exactly t tri-
als can be written explicitly in terms of binomial coefficients and., somewhat 
more neatly, in terms of binomial coefficients and the analogous numbers as-
sociated with a three-number initial betting sequence. We sketch the deriva-
tion of this latter expression in the appendix to this paper. 

Given these numbers, we have essentially answered the question posed by 
the infinitely wealthy gambler at the beginning of this section. For if the 
probability of a win on any turn is p, then the probability of completing a 
cycle on or before the tth trial (still assuming n = 5) is found by adding 
terms of the form 

{ ? +
+

2 V + 2 ( i -p)2x+i'2 

with i = 0 or 1 and k ranging from 1 to -̂- with the restriction that 

3k + i £ t. 

Some of these numbers are given in Table 2 below under the assumption that p 
is, again, 18/38. 

The mean of such a distribution of the number of trials (bets) needed to 
complete a cycle with an initial betting sequence of length n can be found 
without too much trouble. We let Xi5 for t = 1, 2, 3, ..., be a random vari-
able which takes the value -2 if bet i is won and +1 if bet i is lost. Then 
after ^ bets we see that St = X1 + X2 + " * * + Xt gives the change in length 
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TABLE 2 

Completion Probabilities with a Five-Member Initial 
Sequence and p = 18/38 

t 

3 
4 
6 
7 
9 
10 
12 
13 
15 
16 
18 
19 
21 
22 

Probability of Completion 
on Trial t 

.1063 

.1678 

.0837 

.1174 

.0567 

.0799 

.0391 

.0559 

.0278 

.0401 

.0202 

.0295 

.0151 

.0221 

Probability of Completion 
within t Trials 

.1063 

.2741 

.3578 

.4752 

.5319 

.6119 

.6510 

.7069 

.7347 

.7748 

.7950 

.8246 

.8396 

.8617 

of the betting sequence from its original length. For any t we have 

E[St] = E[X±]t9 

since the X^fs are identically distributed and independent. Since 

W J = 1 - 3p, 

where p is the probability of success on any trial, then 

E[St] = (1 - 3p)t. 

We note that, in terms of wins and losses, if we combine the conditions 

w + I = t 

-2w + & = (1 ~ 3p)t, 

we get the line 

£ = i-=-£W . 
V 

Plotting this line of expected results on a graph like that in Figure 2 and 
extending it to meet the completion zone, we can get an idea of the expected 
number of trials to complete a cycle by computing the point of intersection 
with the completion zone boundary line. We get 
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E[T] 3p 1 

where T is the random variable whose value is the number of trials in the 
completion of a cycle. In fact, this is a geometric version of Wald?s iden-
tity (see [3]) which relates E[ST] and E[T]. 

Of course, this analysis addresses only the number of bets needed to com-
plete a cycle and, like the infinitely wealthy gambler, ignores any consider-
ation of the money involved in completing a cycle. In the next section, our 
gambler has finite capital and the difficult questions of financial impact of 
parameter adjustment become paramount. 

4„ A More Realistic Setting 

Consider the following two betting cycles, each of which is completed on 
the 10th trial: 

Trial 

1 
2 
3 
4 
5 
6 
7 
8 
'9 
10 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1, 
2, 
3 
3, 
3, 
3 
3, 
3, 
3 
3, 

Bet Sequence 

2, 
3, 

3 
3, 

3 
3, 

3 

3, 4, 5 
4 

6 

6 

Exhausted 

1, 
2, 
2, 
3, 
3, 
3, 
3, 
3, 
4, 
7, 

2, 
3, 
3, 
4 
4, 
4, 
4, 
4, 
7, 
10 

3, 4, 5 
4 
4, 6 

7 
7, 10 
7, 10, 
7, 10, 
10, 13 

Exhausted 

13 

Bet 

6 
6 
3 
6 
9 
3 
6 
9 
3 
6 

6 
6 
8 
7 
10 
13 
16 

13, 16 19 
17 
17 

Outcome 

Win 
Win 
Lose 
Lose 
Win 
Lose 
Lose 
Win 
Lose 
Win 

Win 
Lose 
Win 
Lose 
Lose 
Lose 
Lose 
Win 
Win 
Win 

Financial Status 

+6 
+12 
+9 
+3 
+12 
+9 
+3 
+12 
+9 
+15 

+6 
Even 
+8 
+1 
-9 
-22 
-38 
-19 
-2 
+15 

Notice that in each cycle there occurred five wins and five losses, as 
expected for a completion on trial ten. However, the money required of the 
bettor greatly differed between the two cycles. In the first, the bettor 
needed only enough money to cover his first bet (6 units). From there on he 
was always "ahead of the game." But in the second cycle, the bettor needed 
to have an initial capital of at least 57 units in order to be able to bet 
19 units on the eighth trial, while being 38 units behind. So we see that 
the arrangement of the win-loss sequence in a cycle of fixed length can have 
great impact on the amount: of money needed to survive the cycle. It is this 
dependence of monetary needs on both the bet sequence and the sequence of 
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wins and losses that drives us to the computer in an effort to understand 
generally what can be expected from various situations. Using a random num-
ber generator we have simulated (naturally, a. Monte Carlo simulation) a 
tournament of Labouchere gamblers. The rules of the tournament were: 

1. Each player begins with $500 and tries to realize a profit of $60. 
2. Each player must strictly follow a given Labouchere scheme until he 

either earns the $60 profit or cannot meet the bet level necessary to 
continue playing. At such time, he is given another $500 and begins 
another play of his system. 

3. All players gamble simultaneously at the same American roulette wheel 
until they have completed at least 2,000 plays and at least 62,500 
spins of the wheel. 

The 24 simulated players who competed in this tournament (which took under 2 
minutes of computer time) had various ideas about what constitutes a good 
betting sequence. The following fairly well characterize the two extremes in 
these ideas: 

Claim of Gambler A: If I structure my sequence so that generally my bets 
are quite small relative to my capital, then chances are that I'll have suf-
ficient capital to survive most streaks of misfortune. 

Claim of Gambler U: I'll use a sequence which is short and requires only 
one cycle completion to achieve the profit goal. This way, on any given play 
I probably won't be around long enough to run into a disastrous win-loss se-
quence. Besides, with my bets being fairly large, chances are that not being 
able to cover a bet still leaves me with substantial capital (i.e. , a ruin is 
not so bad). 

The 24 simulated gamblers and a host of simulated officials gathered a-
round the simulated wheel of fortune and watched it spin more than a quarter 
of a million times until the final player had completed his 2,000 plays. (A 
required 254,661 bets to complete 2,000 plays.) The results, as reported in 
Table 3 in ascending order of goal achievement rate, tend to support the no-
tions of gambler U, up to a point. We do see that, initially, the sequences 
with fewer cycles needed to achieve the goal yield better returns in terms of 
both achievement percentage and mean earnings per play. However, toward the 
bottom on Table 3 some leanings toward player A1s ideas can be noted. Where, 
under player Ufs philosophy, we would have expected his ultimately short se-
quence to have done better then the sequences of players (/, W, or X, we see 
instead that, apparently on occasion, player LPs bets built up a little too 
quickly for his $500 capital to withstand, while the sequences of players I/, 
W, and X allowed for more moderate build-up and a better achievement percent-
age. Compare the mean bet size of players R, S, T, U, I/, W, X to see this. 
Note, however, that the six 10s of player S allowed for a moderate bet size, 
too, but also required substantially more bets to complete a winning cycle. 
Note, too, that while players W and X achieved the profit goal most frequent-
ly, player U was correct about mean earnings and fared better than anyone in 
that category. 
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TABLE 3 

Simulation Results for a Minimum of 2,000 Plays and 62,500 Bets at an 
American Roulette Wheel Using Various Betting Sequences to Attempt 

to Achieve a Profit Goal of $60 from an Initial Capital of $500 

Player 

A 
8 
C 
V 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
? 
a R 
S 
T 
U 
1/ 
W 
X 

Initial 
Bet 

Sequence 

1,1,1,1,1,1 
1,2,3 
3,2,1 
2,2,2 
5,1 
4,2 
2,4 
3,3 
5,4,1,2,3 
1,5 
1,2,3,4,5 
5,4,3,2,1 
6 
7,5,3 
3,5,7 
5,5,5 
5,10 
10,5 
10,10,10,10,10, 
50,10 
60 
10,50 
10,20,30 
30,20,10 

% of 
Plays 
Goal 

Achieved 

74.6 
76.6 
76.6 
76.8 
78.2 
78.2 
78.4 
78.6 
79.0 
79.0 
79.3 
79.4 
79.7 
80.4 
80.4 
80.5 
80.8 
81.0 

,10 82.2 
82.2 
83.2 
83.5 
83.6 
84.3 

Mean 
Bet 
Size 

10.26 
14.76 
14.87 
14.97 
19.36 
19.62 
19.95 
19.87 
20.55 
19.81 
20.30 
20.67 
23.99 
27.44 
27.58 
27.57 
36.42 
36.08 
46.73 
87.43 
115.36 
93.19 
68.55 
68.66 

Mean 
// of 
Bets 
to Win 

136.7 
71.1 
71.1 
71.0 
43.8 
43.9 
43.9 
43.9 
41.6 
44.1 
42.0 
41.7 
30.6 
25.8 
25.8 
25.8 
15.3 
15.5 
10.2 
2.7 
1.8 
2.6 
4.8 
5.0 

Mean 
Earnings 

per 
Play 

-64.86 
-54.16 
-53.97 
-52.32 
-45.65 
-45.04 
-44.47 
-43.76 
-42.71 
-41.68 
-41.89 
-41.26 
-38.78 
-35.81 
-35.55 
-35.16 
-32.59 
-31.57 
-26.77 
-12.42 
-10.52 
-13.84 
-18.35 
-17.52 

# of 
Plays 

2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2040 
2368 
2362 
2367 
3809 
3802 
5470 
17018 
30117 
16380 
11160 
11143 

# of 
Cycles to 
Achieve 
Goal 

10 
10 
10 
10 
10 
10 
10 
10 
4 
10 
4 
4 
10 
4 
4 
4 
4 
4 
1 
1 
1 
1 
1 
1 

To a good extent these results reflect what is generally the case in the 
classical setting where a constant amount is wagered on each trial. In that 
situation an increase in bet size (with initial capital held constant) brings 
a decrease in probability of ruin for a player whose probability of success 
on any trial is less than 1/2 (see [2, p. 347]). This principle needs modi-
fication under Labouchere only where bet sizes tend to grow too rapidly for 
underlying capital. 

Table 4 gives results of another simulation which was run as a study of 
the effects of initial capital on relative frequency of goal achievement. 
Here 15 players stood around the same wheel (actually playing along with the 
24 players in the first simulation) betting the same Labouchere system (bet 
sequence 1, 2, 3, 4, 5 ) , aiming for a $60 profit, but starting with differ-
ent capital amounts. The effects can be noted to be much like those under a 
Martingale scheme by comparing Figure 1 in Section 2 with Figure 4, which 
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gives a visual presentation of Table 4 entries. Again, the wealthy, unambi-
tious gambler has a high likelihood of goal achievement, but a worse expec-
tation since he loses so much in the infrequent disasters he encounters. 

TABLE 4 

Simulation Results for a Minimum of 2,000 Plays and a Minimum of 62,500 Bets 
at an American Roulette Wheel in an Effort to Gain a Profit Goal of $60 

Using Betting Sequence 1,2,3,4,5 ' from Various Initial Capital Values 

Initial 
Capital 

60 
80 
100 
120 
150 
180 
240 
300 
500 
600 
1200 
1800 
2400 
3000 
6000 

Percentage 
of Plays 
Goal 

Achieved 

33.3 
39.6 
45.0 
49.6 
54.9 
59.5 
65.7 
70.6 
79.3 
81.6 
88.7 
91.2 
92.5 
93.8 
96.1 

Mean 
Bet 
Size 

10.97 
11.82 
12.47 
13.17 
14.11 
14.97 
16.20 
17.53 
20.30 
21.58 
27.30 
30.98 
33.79 
36.60 
44.74 

Mean Number 
of Bets 
to a Win 

30.3 
32.1 
33.3 
34.4 
36.0 
37.0 
38.6 
39.8 
42.0 
42.5 
45.6 
46.7 
47.1 
47.9 
48.6 

Mean 
Earnings 
per Play 

-11.67 
-15.05 
-17.53 
-20.18 
-23.55 
-25.70 
-30.35 
-32.28 
-41.89 
-46.44 
-63.77 
-83.17 
-99.61 
-104.18 
-148.92 

Number 
of 

Plays 

2809 
2440 
2217 
2062 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 

60 
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FIGURE 4. A Summary of Entries in Table 4 
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Just to see what sort of capital it would take to make it successfully 
through all 2,000 plays under the setting of Table 4, we simulated a gambler 
with $9,000,000 initial capital rather modestly seeking the $60 profit goal. 
He did win all 2,000 plays of the system, but needed to place some HUGE bets 
from time to time in order to complete a betting cycle. In five of the 8,000 
cycles which he completed he was forced to lay down bets exceeding $100,000. 
His moment of most concern occurred when a bet of $751,440 was demanded by 
the system and his capital was down to $6,926,517. This, of course, suggests 
that the gambler had to have a minimum of $2,824,923 in working capital in 
order to survive all 2,000 plays. Consequently, without an unreasonably large 
capital relative to a given profit goal, we cannot expect to play a Labouchere 
scheme without occasional losses. It is, as with other schemes, possible to 
manipulate the probability of achieving the profit goal and the expected du-
ration of the betting, but, alas, the losses more than cover the gains even-
tually. We are, as noted at the outset, victims of the house edge. 
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Appendix 

In this appendix we first investigate the number of ways in which a bet-
ting cycle can be completed in exactly t trials under the assumption that our 
initial betting sequence contains only three numbers. Having answered that 
question, we shall then apply the result to the now more familiar situation 
of a five-number initial sequence answering the same question in that set-
ting. The result is easily generalized to fit any initial sequence. 

Given a three-number initial sequence, let 

( 1, if j = 0 or -1 
C. = < the number of ways of completing a cycle in exactly J trials, 

3 ( i f j > o. 

In this new setting, the inequalities corresponding to (2) in Section 3 are 

~(.t + 3) <. w < j(t + 5). 
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These, as before, give the conditions for completing a cycle. Consequently, 
in this setting a cycle can be completed only when t = 0 or 2 (mod 3). This 
gives us C3k+1 = 0 for k = • 0, 1, 2, . . . . 

With an argument like the one advanced in Section 3, we see that if t = 
3k + i where i = -1 or 0 and k > 1, exactly k + 1 wins are needed to complete 
a cycle in t trials. However, these wins must be distributed over the trials 
so that the cycle is not completed before trial £. 

For example, exactly 10 wins are required to complete a cycle in 27 tri-
als, but if 9 of these occurred in the first 24 trials, the cycle would have 
previously completed. Similarly, no cycle which completes in exactly 27 
trials will have 8 wins in the first 21 trials, and so on. We are faced with 
the model shown in Figure 5, 

Trials: R R R R R r — R R R 
1 2 3 L J 4 5 6 L J 7 8 9LJ1O 11 I2LJ1314 15LJ&6 17 18LJ19 20 2lLJ22 23 24LJ25 26 27 

FIGURE 5 

wherein we consider the number of ways to place 10 wins among the 26 trials, 
while respecting the barriers shown. The number on each barrier is meant as 
a strict upper bound to the number of wins which may fall to the left of the 
barrier. 

To compute C27 we start with the observation that the last trial of any 
complete cycle must be a win. Consequently, we must determine in how many 
ways 9 wins may be appropriately distributed among the first 26 trials. 

First, ( Q ) gives the number of ways to do this distribution without regard 

to barriers. From this we first subtract the number of win-loss sequences in 
/24\ 

which the 9 wins occur in trials 1-24, L . Next we need to subtract out of 
/ r ) £ t \ / r ) / \ \ J / 

of these f q )-( Q ) remaining win-loss sequences those which do not respect 

the barrier at 21, and have not yet been subtracted; i.e., those with 8 wins 

in the first 21 trials and the 9th win in the 25th or 26th trial—l( ~ j. 

Now we are left with ( J - (q) - ^\Q) win-loss sequences, all of which 

respect the rightmost two barriers of the figure. How many of these should 
be subtracted out for violating the restriction on the barrier at 18? Such 
a sequence would have 7 wins in the first 18 trials and two more wins in 
trials 22 to 26 respecting the barrier at 24. Notice this last condition of 
disstributing two wins appropriately among trials 22 to 26 with a fixed win 
in trial 27 is exactly the condition for completing a cycle in six trials 
(i.e., having a win in the 6th trial and distributing two more wins among 
trials 1-3). Consequently, the number of sequences to be subtracted out at 
this step is 

C*\7 



278 ANALYSIS OF A BETTING SYSTEM [Aug. 1982] 

Continuing this reasoning, we finally get 

« » • (V ) -« . (? ) -« . (V ) - ".ft8)-".( ' . ' ) -c»( 's
2) 

" ^15(4) - ̂ 18(3) " ^21(2) 

And a simple inductive argument gives us that 

1, if t = -1, 0 

0, if t = 3k + 1, k _> 0 

3k • ' - k~2 

k J ~ L C3i + i{ k _ 1 J), ±£ t = 3k + z, k ^ l , and 
7 £=0 v • ' i = 0 or -1, 

where we take a sum to be zero if its upper index limit is less than its 
lower index limit. 

Returning to our example with the five-number initial betting sequence, 
an argument entirely like the preceding one leads us to 

(3k + i\ _ (3k + 21 - 2\ k v"% (3k + 3i ~ 5 " 3Z\ 
\k + 2f \ k + i I 2^ c3i + 2i[ k + i _ i h 
\ ; \ / £=Q \ / 

where k >_ 1, % - 0 or 1, and the Ĉ- are the same numbers as before (arising 
in the three-number initial sequence case). Here, again, we take sums whose 
upper index limit is less than the lower index limit to be zero. 

This, of course, is easily generalized to the case where the length of 
the initial betting sequence is arbitrary. 


