[Nov.

EULERIAN NUMBERS AND THE UNIT CUBE

DOUGLAS HENSLEY
Texas A \& M University, College Station, TX 77843
(Submitted April 1981)

1. INTRODUCTION

There is an excellent expository paper [3] on Eulerian numbers and polynomials, and we begin with a quotation from it: "Following Euler [5] we may put

$$
\begin{equation*}
\frac{1-\lambda}{e^{x}-\lambda}=\sum_{n=0}^{\infty} H_{n} \frac{x^{n}}{n!} \quad(\lambda \neq 1), \tag{1.1}
\end{equation*}
$$

where $H_{n}=H_{n}(\lambda)$ is a rational function of λ; indeed

$$
\begin{equation*}
R_{n}=R_{n}(\lambda)=(\lambda-1)^{n} H_{n}(\lambda) \tag{1.2}
\end{equation*}
$$

is a polynomial in λ of degree $n-1$ with integral coefficients. If we put

$$
\begin{equation*}
R_{n}=\sum_{k=1}^{n} A_{n k} \lambda^{k-1} \quad(n \geqslant 1), \tag{1.3}
\end{equation*}
$$

then the first few values of $A_{n k}$ are given by the following table, where n denotes the row and k the column;

1
$1 \quad 1$
14
$\begin{array}{lllll}1 & 26 & 66 & 26 & 1\end{array}$
$\begin{array}{llllll}1 & 57 & 302 & 302 & 57 & 1\end{array}$
Alternatively, Worpitzky showed that the $A_{n k}$ may be defined by means of

$$
\begin{equation*}
x_{n}=\sum_{k=1}^{n} A_{n k}\binom{x+k-1}{n} . " \tag{1.5}
\end{equation*}
$$

The numbers $A_{n k}$ occur in connection with Bernoulli numbers and polynomials [11], and splines [10], and as the number of permutations of (1, 2, \ldots, n) with k rises. [A permutation ($\alpha_{1}, \ldots, \alpha_{n}$) has a rise at α_{i} if $\alpha_{i}<\alpha_{i+1}$; by convention, there is a rise to the left of α_{1}] The $A_{n k}$ satisfy a recursion and are symmetric:

$$
\begin{equation*}
A_{n+1, k}=k A_{n, k}+(n-k+1) A_{n, k-1} \tag{1.6}
\end{equation*}
$$

and

$$
A_{n, k}=A_{n, n-k+1} \quad(1 \leqslant k \leqslant n)
$$

From (1.6), it follows that

$$
\sum_{k=1}^{n} A_{k}=n!\quad(n \geqslant 1) .
$$

We now consider the unit cube $Q_{n}: 0 \leqslant x_{i} \leqslant 1(1 \leqslant i \leqslant n)$, with the usual measure. It is evident from elementary calculations and from observation of (1.4) that, for $n=2,3$, or 4 and $1 \leqslant k \leqslant n$, the volume $V_{n k}$ of the section

$$
k-1 \leqslant \sum_{i=1}^{n} x_{i} \leqslant k
$$

of the unit cube is given by $V_{n k}=A_{n k} / n!$. This observation led Hillman (in a private communication with this author) to conjecture that, generally,

$$
V_{n k}=A_{n k} / n!
$$

He was right.

2. APPLICATIONS

In the notation of Section 1, we have

THEOREM 1: For $1 \leqslant k \leqslant n$, we have $V_{n k}=A_{n k} / n$!

The proof is not difficult, but we defer that to the last. What is nice about this is that the unit cube is the natural probability space for a sum of n independent random variables $X_{i}(1 \leqslant i \leqslant n)$ identically and uniformly distributed on [0, 1]. Thus, we may reinterpret (2.1) to read:

$$
\begin{equation*}
\text { For } 1 \leqslant k \leqslant n, \operatorname{Prob}\left(k-1 \leqslant \sum_{1}^{n} X_{i} \leqslant k\right)=A_{n k} / n! \tag{2.2}
\end{equation*}
$$

Through this interpretation, the central limit theorem and related results can be brought to bear on the asymptotic behavior of the Eulerian numbers.

For instance, the variance of each X_{i} is

$$
\int_{0}^{1}(x-1 / 2)^{2} d x=1 / 12
$$

Thus the variance of $\sum_{1}^{n} X_{i}$ is $n / 12$. Now, by the central limit theorem, if x is fixed and

$$
\omega_{n}=(n / 12)^{1 / 2} x+\frac{1}{2} n
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\sum_{1}^{n} X_{i} \leqslant \omega_{n}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t \tag{2.3}
\end{equation*}
$$

Since the probability density function $f_{n}(t)$ of $\sum_{1}^{n} X_{i}$ tends to zero uniformly in t as $n \rightarrow \infty$, we can replace ω_{n} with $\left[\omega_{n}\right]$ in (2.3). Then, from (2.2), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{\left[\omega_{n}\right]} A_{n k} / n!=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t \tag{2.4}
\end{equation*}
$$

This is equivalent to Theorem 1 of [4]. It may be that this approach permits a simpler proof or an improvement in the error term in the other theorem of [4], which states that

$$
\begin{equation*}
(1 / n!) A_{n,\left[\omega_{n}\right]}=(6 / n \pi)^{1 / 2} \exp \left(-\frac{1}{2} x^{2}\right)+0\left(n^{-3 / 4}\right) \tag{2.5}
\end{equation*}
$$

From a geometric point of view, one important property of the cube is that it is convex. The Brunn-Minkowski theorem states that the area $A(t)$ of the intersection of a hyperplane $H(t)$ with equation

$$
\sum_{1}^{n} c_{i} x_{i}=t
$$

with a convex body Q in real n-space has a concave nth root on the interval where it is positive. Thus, if $H_{n}(t)$ has equation

$$
\sum_{1}^{n} x_{i}=t
$$

and $A_{n}(t)$ is the area of $H_{n}(t) \cap Q_{n}$ (where Q_{n} is still the unit cube $0 \leqslant x_{i} \leqslant 1$, $1 \leqslant i \leqslant n$), then $\left(A_{n}(t)\right)^{1 / n}$ is concave on ($0, n$). Consequently,

$$
\begin{equation*}
\log A_{n}(t) \text { is concave on }(0, n) \tag{2.6}
\end{equation*}
$$

There is a simple relation between $A_{n}(t)$ and the probability density function $f_{n}(t)$ of $\sum_{1}^{n} X_{i}$:

$$
A_{n}(t)=\sqrt{n} f_{n}(t)
$$

(See, e.g., [6].)
Now let $V_{n k}$ be the volume of Q_{n} between $H(k-1)$ and $H(k)$. Then,

$$
\begin{equation*}
V_{n k}=n^{-1 / 2} \int_{k-1}^{k} A_{n}(t) d t=\int_{k-1}^{k} f_{n}(t) d t \tag{2.7}
\end{equation*}
$$

There is a considerable literature on logarithmic concavity. A function $g(t)$ is called log-concave if $g(t) \geqslant 0$ on R and is positive on just one interval, and if $\log g(t)$ is concave on that interval. A very special case of a theorem due to Prekopa says that if $f(t)$ is log-concave, then

$$
F(x)=\int_{x-c}^{x} f(t) d t
$$

is also log-concave $[2,8,9]$. In particular,

$$
V(x)=n^{-1 / 2} \int_{x-c}^{x} A(t) d t
$$

is log-concave, and in most particular,

$$
\begin{equation*}
V_{n, k-1} V_{n, k+1} \leqslant V_{n, k}^{2}, \tag{2.8}
\end{equation*}
$$

or what is the same thing,

$$
\begin{equation*}
A_{n, k-1} A_{n, k+1} \leqslant A_{n, k}^{2} \tag{2.9}
\end{equation*}
$$

This is due to Kurtz, who proved strict inequality in (2.9) when $1 \leqslant k \leqslant n$.

3. PROOF OF THEOREM 1

The probability density functions $f_{n}(t)$ for $\sum_{1}^{n} X_{i}$ can be generated recur-
sively starting with

$$
f_{1}(t)= \begin{cases}1 & \text { if } 0 \leqslant t \leqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

and using

$$
\begin{equation*}
f_{n+1}(t)=f_{n}(t) * f_{1}(t)=\int_{0}^{t} f_{n}(u) f_{1}(t-u) d u=\int_{t-1}^{t} f_{n}(u) d u \tag{3.1}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
V_{n k}=\int_{k-1}^{k} f_{n}(t) d t=f_{n+1}(k) \tag{3.2}
\end{equation*}
$$

It follows from (1.5) (but not trivially) that

$$
\begin{equation*}
A_{n k}=\sum_{j=0}^{k-1}(-1)^{j}\binom{n+1}{j}(k-j)^{n} \tag{3.3}
\end{equation*}
$$

This is (2.15) of [3] and is due to Euler. Thus, we can prove Theorem 1 by showing that

$$
\begin{equation*}
f_{n+1}(k)=\frac{1}{n!} \sum_{j=0}^{k-1}(-1)^{j}\binom{n+1}{j}(k-j)^{n} \tag{3.4}
\end{equation*}
$$

Now, $f_{n+1}(t)$ is the convolution of $n+1$ copies of $f_{1}(t)$, so its Laplace transform is

$$
\begin{equation*}
F(s)=\left(\frac{1}{s}\left(1-e^{-s}\right)\right)^{n+1} \tag{3.5}
\end{equation*}
$$

(See, e.g., [1].) Expanding (3.5) by the binomial theorem gives

$$
F(s)=(1 / s)^{n+1} \sum_{j=0}^{n+1}(-1)^{j}\binom{n+1}{j} e^{-s j}
$$

and the inverse Laplace transform of the sum of these $n+2$ terms computes to

$$
\begin{equation*}
f_{n+1}(t)=\sum_{j=0}^{n+1} \frac{1}{n!}(-1)^{j}\binom{n+1}{j}(t-j)_{+}^{n}, \tag{3.6}
\end{equation*}
$$

where $(t-j)_{+}$is 0 for $t<j$ and $t-j$ for $t \geqslant j$. With $t=k$, (3.6) reduces to (3.4). 口

REFERENCES

1. W. Boyce \& R. DiPrima. Elementary Differential Equations and Boundary Value Problems, Chap. 6. New York: John Wiley \& Sons, 1977.
2. H. Brascamp \& E. Lieb. "On Extensions of the Brunn-Minkowski and Pre-kopa-Leindler Theorems, Including Inequalities for Log Concave Functions, and With an Application to the Diffusion Equation." J. Func. Anal. 22 (1976):366-389.
3. L. Carlitz. "Eulerian Numbers and Polynomials." Math. Mag. 33 (1959): 247-260.
4. L. Carlitz, D. Kurtz, R. Scoville, \& 0. Stackelberg. "Asymptotic Properties of Eulerian Numbers." 2. Wahrscheinlichkeitstheorie verw. Geb. 23 (1972):47-54.
5. L. Euler. "Institutiones Calculi Differentialis." Omnia Opera (1), 10 (1913).
6. D. Hensley. "Slicing the Cube in \mathbf{R}^{n} and Probability (Bounds for the Measure of a Central Cube Slice in \mathbf{R}^{n} by Probability Methods)." Proc. Am. Math. Soc. 73, No. 1 (1979):95-100.
7. A. Hillman, P. Mana, \& C. McAbee. "A Symmetric Substitute for Stirling Numbers." The Fibonacci Quarterly 9, no. 1 (1979):51-60, 73.
8. A. Prekopa. "On Logarithmic Concave Measures and Functions." Acta Sci. Math. (Szeged) 34 (1973):335-343.
9. Y. Rinott. "On Convexity of Measures." The Annals of Probability 4, No. 6 (1976): 1020-1026.
10. I. Schoenberg. "Cardinal Spline Interpolation and the Exponential Euler Splines." Lecture Notes in Math., No. 399 (New York: Springer, 1973): 477-489.
11. H. Vandiver. "An Arithmetical Theory of the Bernoulli Numbers." Trans. Am. Math. Soc. 51:502-531.
