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1. INTRODUCTION 

There is an excellent expository paper [3] on Eulerian numbers and poly-
nomials, and we begin with a quotation from it: "Following Euler [5] we may 
put 

-Lz_L« E nn^ (x * i ) , (i.D 

where Hn = Hn(X) is a rational function of A; indeed 

Rn = 2?n(X) - (X - DnHn(X) (1.2) 

is a polynomial in X of degree n - 1 with integral coefficients. If we put 

Rn = E^JfcX*"1 (" > 1). d.3) 
k = l 

then the first few values of An^ are given by the following table, where n 
denotes the row and k the column; 

1 
1 
1 
1 
1 

1 
4 
11 
26 
57 

1 
11 
66 

302 

1 
26 

302 
1 

57 

(1.4) 

1 

Alternatively, Worpitzky showed that the An\ may be defined by means of 

The numbers Ank occur in connection with Bernoulli numbers and polynomi-
als [11], and splines [10], and as the number of permutations of (1, 2, .. . , ri) 
with k vises. [A permutation (<z19 ..., ccn) has a rise at ai if a^ < ai + 1; by 
convention, there is a rise to the left of a1.] The ̂ 4nfe satisfy a recursion 
and are symmetric: 

K + i,k = ^n,k + (n - fe + i M ^ ^ i (1.6) 
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and 
An,k = An,n-k + l (1 < fe < n). 

From (1.6), it follows that 

n 
£ Ak = n\ (n > 1). 

We now consider the unit cube Qn : 0 < 2^ < 1 (1 < £ < n) , with the usual 
measure. It is evident from elementary calculations and from observation of 
(1.4) that, for n = 2, 3, or 4 and 1 < k < n, the volume F„^ of the section 

n 
fc - 1 < Yixi < fc 

i = l 

of the unit cube is given by 7n& = Any. /n\ . This observation led Hillman (in 
a private communication with this author) to conjecture that, generally, 

Vnk = Ank/nl 

He was right. 

2. APPLICATIONS 

In the notation of Section 1, we have 

THEOREM 1: For 1 < k < n, p/e £ave 7nfc = Ank/nl (2.1) 

The proof is not difficult, but we defer that to the last. What is nice 
about this is that the unit cube is the natural probability space for a sum 
of n independent random variables X^ (1 < i < n) identically and uniformly 
distributed on [0, 1]. Thus, we may reinterpret (2.1) to read: 

For 1 < k < n, Probffe - 1 < £ Xt < k J = Ank /nl (2.2) 

Through this interpretation, the central limit theorem and related results 
can be brought to bear on the asymptotic behavior of the Eulerian numbers. 

For instance, the variance of each X^ is 
• l 

(x - l/2)2dx = 1/12. / ' 
Jo '0 

71 

Thus the variance of £ Xi is nI'12. Now, by the central limit theorem, if x 
is fixed and x 

(n/12)1/2x + \n, 
then 
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lim ProbjE X. < oon ) = — f e~t2/2dt. (2.3) 

n 
Since the probability density function / (£) of 2 X± tends to zero uniformly 

in t as n ->• °°9 we can replace 0)n with [u)w] 'in (2.3). Then, from (2.2), we 
have 

lim J^A^/nl = - ^ / e't/2dt. (2.4) 

This is equivalent to Theorem 1 of [4], It may be that this approach permits 
a simpler proof or an improvement in the error term in the other theorem of 
[4]9 which states that 

(l/nl)AnA.n] = (6/n^)1/2exp(-|*2) +0(n"3/!+). (2.5) 

From a geometric point of view, one important property of the cube is 
that it is convex. The Brunn-^Minkowski theorem' states fzĥ t,|\the" area A(t) of 
the intersection of a hyperplane H(t) with equation 

n 

1 

with a convex body Q in real n-space has a concave nth root on the interval 
where it is positive. Thus, if Hn(t) has equation 

n 

1 

and An{t) is the area of Hn(t) C] Qn (where Qn is still the unit cube 0 < ^ < 1, 
1 < i < n) , then {An(t))1/n is concave on (0, n) . Consequently, 

log An(t) is concave on (0, n). (2.6) 

There is a simple relation between i4n(t)andthe probability density function 
fn(t) ofS^: 

i4n(t) = ,/nfn(t). 

(See, e.g., [6].) 

Now let Fn^ be the volume of Qn between H(k - 1) and H(k). Then, 

fk fk 
Vnk = n~1/2 An(t)dt =/ fn(t)dt. (2.7) 

A -1 A -1 

There is a considerable literature on logarithmic concavity. A function 
g(t) is called tog-concave if #(£) ) 0 on R and is positive on just one in-
terval, and if log git) is concave on that interval. A very special case of 
a theorem due to Prekopa says that if fit) is log-concave, then 
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Fix) = f f(t)dt 
J X - O 

is also log-concave [2, 8, 9]. In particular, 

V(x) = n-ll2f A(t)dt 
•* X - Q 

is log-concave, and in most particular, 

\ , *.!*;, *+i < vlk> (2-8) 
or what is the same thing, 

Antk.1Antk + 1 <A2
n,k. (2.9) 

This is due to Kurtz, who proved strict inequality in (2.9) when 1 < k ^ n. 

3. PROOF OF THEOREM 1 
n 

The probability density functions fn (t) for £ X^ can be generated recur-
sively starting with 1 

(1 if 0 < t < 1 
J l V W \o otherwise 

and using 

f„ + 1(*> = /„(*) * AC*) - / /„(w)A<* - " ) d M = / /„("><*"• (3-1) 
Jo Jt-i 

Thus, 

^ = / fn(t)dt = /n+1(fc). (3.2) 

It follows from (1.5) (but not trivially) that 

k-i 
&nk = 

j-o 
E (-DJ'(n *il)fr- J)n. (3.3) 

This is (2.15) of [3] and is due to Euler. Thus, we can prove Theorem 1 by 
showing that 

fn + iW = -V ^(-W^ * X)0c - J)n. (3.4) 

Now, fn+1(t) is the convolution of n + 1 copies of f±(t)s so its Laplace 
transform is 

F( 
(I \n + 1 

7(s) = (̂ (1 - £"*)) . (3.5) 

(See, e.g., [1].) Expanding (3.5) by the binomial theorem gives 
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j-o x J ' 

and the inverse Laplace transform of the sum of these n+ 2 terms computes to 

fn+1(t) = E ^ ( - i ) j n - > - ^ : . (3.6) 
where (t - J) + is 0 for t < j and t - j for t > j.- With t = k, (3.6) reduces 
to (3.4). • 
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