```
SOME PROPERTIES OF DIVISIBILITY OF HIGHER-ORDERED
            LINEAR RECURSIVE SEQUENCES
                    GERÖCS LÁSZLÓ
Balzac U. 35, Budapest, 1136, V.3. Hungary
                (Submitted August 1981)
```

In this paper we consider the Fibonacci sequence defined by

$$
F_{0}=0, F_{1}=1, \text { and } F_{n}=F_{n-1}+F_{n-2}, n \geqslant 2,
$$

the $k$-ordered Fibonacci sequence $\left\{G_{n}^{(k)}\right\}$, and the generalized $k$-ordered linear recursive sequence $\left\{R_{n}^{(k)}\right\}$, both of which will be defined.

First a new relation on the Fibonacci sequence will be proved and a wellknown relation on the Fibonacci sequence will be generalized for the $k$-ordered Fibonacci sequence. Then an infinite set of positive integers will be found such that no integer in this set is a divisor of any term in the sequence $\left\{R_{n}^{(k)}\right\}$. Finally, a result of Lieuwens [1] will be generalized for $k$-ordered linear recursive sequences.

DEFINITION 1: For every $k>1$, the $k$-ordered Fibonacci sequence $\left\{G_{n}^{(k)}\right\}$ is defined by $G_{0}^{(k)}=G_{1}^{(k)}=\cdots=G_{k-1}^{(k)}=1$, and

$$
G_{n}^{(k)}=\sum_{i=1}^{k} G_{n-i}^{(k)}, n \geqslant k .
$$

(When $k=2$, this sequence is essentially the Fibonacci sequence.)

DEFINITION 2: For every $k>1$, the generalized $k$-ordered linear recursive sequence $\left\{R_{n}^{(k)}\right\}$ is defined by $R_{0}^{(k)}=R_{1}^{(k)}=\cdots=R_{k-1}^{(k)}=1$, and

$$
R_{n}^{(k)}=\sum_{i=1}^{k} a_{i} R_{n-i}^{(k)}, n \geqslant k
$$

where the $\alpha_{i}$ are integers not all equal to 0 .

DEFINITION 3: If $m \neq 0$ is an integer, then for every $k>1$, the length of the period modulo $m$ of $\left\{R_{n}^{(k)}\right\}$ is the least natural number $p(m)$ such that there exists an index $n_{0}$, and for $n>n_{0}$,

$$
R_{n+p}^{(k)} \equiv R_{n}^{(k)}(\bmod m)
$$

A sequence is called absolutely periodic modulo $m$ if $n_{0}=0$.

REMARK: Every sequence $\left\{R_{n}^{(k)}\right\}$ is clearly periodic.

DEFINITION 4: The occurrence order of the natural number $m>1$ in the sequence $\left\{R_{n}^{(k)}\right\}$ is the number $r(m)$, for which $m \mid R_{r}^{(k)}$, but $m \nmid R_{n}^{(k)}$ if $0<n<r$.

EXAMPLE 1: Let the $\alpha_{i}=1$ and $k=3$. Then we have the sequence

$$
\left\{R_{n}^{(3)}\right\} \equiv 1,1,1,3,5,9,17,31,57,105,193, \ldots .
$$

If $m=5$, this sequence reduced modulo 5 becomes
$1,1,1,3,0,4,2,1,2,0,3,0,3,1,4,3,3,0,1,4$, $0,0,4,4,3,1,3,2,1,1,4,1,1,1,3, \ldots$,
and we have

$$
p(5)=31, n_{0}=0, r(5)=4
$$

THEOREM 1: If $\left\{R_{n}\right\}$ is the sequence defined by

$$
R_{0}=1, R_{n}=\sum_{j=1}^{n} j R_{n-j}, n>0
$$

then for $n \geqslant 2$,
(a) $R_{n}=F_{2 n}$;
(b) $\sum_{j=0}^{n} R_{j}=F_{2 n+1}$.

PROOF: (a) For $n=2,3$, and 4, the theorem is easily established. Using finite induction, and assuming that for $i>4$,

$$
\begin{aligned}
& R_{i}=F_{2 i} \\
& \text { then } \\
& \qquad \begin{aligned}
F_{2(i+1)} & =F_{2 i+2}=F_{2 i+1}+F_{2 i}=F_{2 i}+F_{2 i-1}+F_{2 i} \\
= & 2 F_{2 i}+F_{2 i}-F_{2 i-2}=3 F_{2 i}-F_{2(i-1)}=3 R_{i}-R_{i-1} \\
= & 3 \sum_{j=1}^{i} j R_{i-j}-\sum_{j=1}^{i-1} j R_{i-j-1}=\sum_{j=1}^{i}(2 j+1) R_{i-j} \\
= & \sum_{j=1}^{i} j R_{i-j}+\sum_{j=2}^{i+1} j R_{i+1-j}=R_{i}+\sum_{j=2}^{i+1} j R_{i+1-j}
\end{aligned}
\end{aligned}
$$

$$
=\sum_{j=1}^{i+1} j R_{i+1-j}=R_{i+1}
$$

as required.
(b) Applying (a) above, we have

$$
\begin{aligned}
F_{2 n+1} & =F_{2(n+1)}-F_{2 n}=R_{n+1}-R_{n} \\
& =\sum_{j=1}^{n+1} j R_{n+1-j}-\sum_{j=1}^{n} j R_{n-j}=\sum_{j=0}^{n} R_{j} .
\end{aligned}
$$

A well-known identity for Fibonacci numbers is

$$
\begin{equation*}
F_{n}=\sum_{i=2}^{n} F_{n-i}+1, n \geqslant 2 \tag{1}
\end{equation*}
$$

An alternate form of (1), which we obtain by renaming $F_{0}=1$, $F_{1}=1, F_{2}=2$, and generalize as Theorem 2, is

$$
\begin{equation*}
F_{n}=\sum_{i=2}^{n-2} F_{n-i}+3, n \geqslant 4 \tag{2}
\end{equation*}
$$

THEOREM 2: If $G_{n}^{(k)}$ is as in Definition 1 , then for all $n \geqslant 2 k$,

$$
\begin{equation*}
G_{n}^{(k)}=\sum_{i=1}^{k-2} i G_{n-i-1}^{(k)}+(k-1) \sum_{i=k}^{n-k} G_{n-i}^{(k)}+\frac{k(k+1)}{2} \tag{3}
\end{equation*}
$$

Note that $G_{n}^{(2)}=F_{n}$ as defined in (2) and hence (2) is a special case of (3). PROOF: Let $k \geqslant 2$ be fixed. If $n=2 k$, then using the definition of $G_{2 k}^{(k)}$ twice and performing the indicated sums, we have

$$
\begin{aligned}
G_{2 k}^{(k)} & =\sum_{i=1}^{k} G_{2 k-i}^{(k)}=\sum_{i=1}^{k} \sum_{j=1}^{k} G_{2 k-i-j}^{(k)} \\
& =G_{2 k-2}^{(k)}+2 G_{2 k-3}^{(k)}+\cdots+(k-2) G_{k+1}^{(k)}+(k-1) G_{k}^{(k)}+\frac{k(k+1)}{2} \\
& =\sum_{i=1}^{k-2} i G_{2 k-i-1}^{(k)}+(k-1) G_{k}^{(k)}+\frac{k(k+1)}{2} .
\end{aligned}
$$

(Recall that $\left.G_{0}^{(k)}=G_{1}^{(k)}=\cdots=G_{k-1}^{(k)}=1.\right)$
Now suppose that (3) is true for $m>2 k$. Then

$$
\begin{aligned}
G_{m+1}^{(k)} & =\sum_{i=1}^{k} G_{m-i+1}^{(k)}=\sum_{i=0}^{k-1} G_{m-i}^{(k)}=G_{m}^{(k)}+\sum_{i=1}^{k-1} G_{m-i}^{(k)} \\
& =\sum_{i=1}^{k-2} i G_{m-i-1}^{(k)}+(k-1) \sum_{i=k}^{m-k} G_{m-i}^{(k)}+\frac{k(k+1)}{2}+\sum_{i=1}^{k-1} G_{m-i}^{(k)}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\sum_{i=1}^{k-3} i G_{m-i-1}^{(k)}+\sum_{i=1}^{k-2} G_{m-i}^{(k)}\right]+\left[(k-2) G_{m-(k-1)}^{(k)}+G_{m-(k-1)}^{(k)}\right. \\
& \left.+(k-1) \sum_{i=k}^{m-k} G_{m-i}^{(k)}\right]+\frac{k(k+1)}{2} \\
& =\sum_{i=1}^{k-2} i G_{(m+1)-i-1}^{(k)}+(k-1) \sum_{i=k}^{m+1-k} G_{(m+1)-i}^{(k)}+\frac{k(k+1)}{2},
\end{aligned}
$$

which proves that (3) is true for $n=m+1$ and hence for all $n$.
We now turn to the question of divisibiltiy of the terms of the sequence $\left\{R_{n}^{(k)}\right\}$ by the natural number $m$ and state the following theorem.

THEOREM 3: If $\left\{R_{n}^{(k)}\right\}$ is as in Definition 2, and if $m$ if a natural number such that

$$
\left(\sum_{i=1}^{k} \alpha_{i}\right)-1 \neq 0
$$

and

$$
\operatorname{g.c} \cdot \mathrm{d} \cdot\left(m,\left(\sum_{i=1}^{k} a_{i}-1\right)\right)=d>1
$$

then $m \nmid R_{n}^{(k)}$ for any $n$. That is, $r(m)$ does not exist.
PROOF: Let

$$
M=\left(\sum_{i=1}^{k} a_{i}\right)-1
$$

If g.c.d. $(m, M)=d>1$, we show that for every $n$,

$$
R_{n}^{(k)} \equiv 1(\bmod M)
$$

If $n<k$, then $R_{n}^{(k)}=1$ and $M \nmid R_{n}^{(k)}$, since $M>1$.
Now, if we assume that the theorem is true for any $k$ successive terms of the sequence, we have

$$
\begin{gathered}
R_{n}^{(k)}=j_{0} M+1 \\
R_{n+1}^{(k)}=j_{1} M+1 \\
\cdots \cdot \cdots \cdot \\
R_{n+k-1}^{(k)}=j_{k-1} M+1
\end{gathered}
$$

Multiplying each of these equations successively by $\alpha_{k}, \alpha_{k-1}, \ldots, \alpha_{1}$, we obtain

$$
\begin{gathered}
a_{k} R_{n}^{(k)}=a_{k} j_{0} M+a_{k} \\
a_{k-1} R_{n+1}^{(k)}=a_{k-1} j_{1} M+a_{k-1} \\
\cdots \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
\alpha_{1} R_{n+k-1}^{(k)}=a_{1} j_{k-1} M+a_{1},
\end{gathered}
$$

and then adding, we have

$$
\begin{aligned}
R_{n+k}^{(k)}=\sum_{i=1}^{k} a_{i} R_{n+k-i}^{(k)} & =M \sum_{i=1}^{k} a_{i} j_{k-i}+\left(\sum_{i=1}^{k} a_{i}\right)-1+1 \\
& =M\left(\sum_{i=1}^{k} a_{i} j_{k-i}+1\right)+1
\end{aligned}
$$

which establishes that $R_{n+k}^{(k)} \equiv 1(\bmod M)$.
Now we assume that for some $s$,

$$
m \mid R_{s}^{(k)}
$$

Then $d \mid R_{s}^{(k)}$ and $d \mid M$ and hence there exist integers $j, r_{1}$, and $r_{2}$ such that

$$
R_{s}^{(k)}=r_{1} d=j M+1=r_{2} d+1
$$

which implies $d \mid 1$, a contradiction, and the proof is complete.
If g.c.d. ( $m, M$ ) $=1$, then it is not known whether, in general, there exists $n$ such that $m \mid R_{n}^{(k)}$.

Finally, we examine $p(m)$, the length of the period of $\left\{R_{n}^{(k)}\right\}$ modulo $m$.
Waddill[2] has shown that in the special case where $R_{0}=0, R_{1}=R_{2}=1$, $k=3, a_{1}=a_{2}=a_{3}=1$, and $m=q_{1}^{\alpha_{1}}, q_{2}^{\alpha_{2}}, \ldots, q_{r}^{\alpha_{r}}, q_{i}$ prime, then

$$
\begin{equation*}
p(m)=1 . \operatorname{c.m} .\left[p\left(q_{1}^{\alpha_{1}}\right), p\left(q_{2}^{\alpha_{2}}\right), \ldots, p\left(q_{r}^{\alpha_{r}}\right)\right] \tag{4}
\end{equation*}
$$

Lieuwens [1] has shown that (4) holds for an arbitrary 2-ordered sequence. We show that (4) is true for every $k$-ordered sequence.

THEOREM 4: Let $\left\{R_{n}^{(k)}\right\}$ be as in Definition 2 and let $m>1$ be an arbitrary integer, where

$$
m=q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \cdots q_{r}^{\alpha_{r}}, q_{i} \text { prime }
$$

then

$$
p(m)=1 . \operatorname{c.m} .\left[p\left(q_{1}^{\alpha_{1}}\right), p\left(q_{2}^{\alpha_{2}}\right), \ldots, p\left(q_{r}^{\alpha_{r}}\right)\right]
$$

PROOF: For every integer $q_{i}^{\alpha_{i}}$, there exists an index $n_{0_{i}}$ such that for $n>n_{0_{i}}$,

$$
R_{n+j p\left(q_{i}^{\alpha_{i}}\right)}^{(k)} \equiv R_{n}^{(k)}\left(\bmod q_{i}^{\alpha_{i}}\right), j=0,1,2, \ldots
$$

Let $n^{*}=\max \left(n_{0_{1}}, n_{0_{2}}, \ldots, n_{0_{r}}\right)$. Then for every integer $t>0, j \geqslant 0$,

$$
R_{n^{\star}+j p\left(q_{i}^{\alpha_{i}}\right)+t}^{(k)} \equiv R_{n^{*}+t}^{(k)}\left(\bmod q_{i}^{\alpha_{i}}\right)
$$

for all $i$. Hence, for $i=1,2$, say,

$$
\begin{aligned}
& R_{n^{*}+j p\left(q_{1}^{\alpha_{1}}\right)+t}^{(k)} \equiv R_{n^{*}+t}^{(k)}\left(\bmod q_{1}^{\alpha_{1}}\right) \\
& R_{n^{*}+j p\left(q_{2}^{\alpha_{2}}\right)+t}^{(k)} \equiv R_{n^{*}+t}^{(k)}\left(\bmod q_{2}^{\alpha_{2}}\right)
\end{aligned}
$$

Since g.c.d. $\left(q_{1}, q_{2}\right)=1$, then the smallest integer, $p$, such that

$$
R_{n^{*}+p+t}^{(k)} \equiv R_{n *+t}^{(k)}\left(\bmod q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}}\right)
$$

occurs when

$$
p=1 . \mathrm{c} \cdot \mathrm{~m} \cdot\left[p\left(q_{1}^{\alpha_{1}}\right), p\left(q_{2}^{\alpha_{2}}\right)\right],
$$

since $p$ must be a multiple of both $p\left(q_{1}^{\alpha_{1}}\right)$ and $p\left(q_{2}^{\alpha_{2}}\right)$. The general case follows similarly.

ACKNOWLEDGMENT
The author acknowledges the assistance of Professor Marcellus E. Waddill in editing this manuscript for publication.

## REFERENCES

1. E. Lieuwens. Fermat Pseudo Primes. Drukkerij, Hoogland, Delft, 1971.
2. Marcellus E. Waddill. "Some Properties of a Generalized Fibonacci Sequence Modulo m." The Fibonacci Quarterly 16, No. 4 (August 1978):344-353.
