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In th i s paper we consider the Fibonacci sequence defined by 

F0 = 0, F1 = 1, and Fn = Fn _ 1 + F n „ 2 9 n> 29 

the fc-ordered Fibonacci sequence {Grf ' } •, and the generalized /c-ordered l inear 
recursive sequence 0?^ ) }, both of which wi l l be defined. 

F i r s t a new re l a t i on on the Fibonacci sequence w i l l be proved and a wel l -
known re l a t i on on the Fibonacci sequence wi l l be generalized for the ^-ordered 
Fibonacci sequence. Then an i n f i n i t e set of pos i t ive integers w i l l be found 
such that no integer in t h i s set Is a divisor of any term In the sequence 
{RJl'}. F ina l ly , a r e su l t of Lieuwens [1] w i l l be generalized for ^-ordered 
l inear recursive sequences. 

DEFINITION 1: For every k > 1, the k -ordered Fibonacci sequence {£„ } i s 
defined by G$k) = G{k) = ••• = G^\ = 1, and 

• £ = 1 

(When k = 2, this sequence is essentially the Fibonacci sequence.) 

DEFINITION 2: For every k > 1, the generalized /c-ordered linear recursive 
sequence {£<*> } is defined by /?0<*> = i?f} = ••• = RJ£\ = 1, and 

i =1 
where the a^ are integers not all equal to 0. 

DEFINITION 3: If 777 ^ 0 Is an integer, then for every k > ls the length of 
the period modulo m of {i?^) } is the least natural number p(rn) such that there 
exists an index nQ , and for n > n0, 

354 
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A sequence is called absolutely periodic modulo m if n0 = 0. 

REMARK: Every sequence {Rn } is clearly periodic. 

DEFINITION 4: The occurrence order of the natural number m > 1 in the se-
quence {R^k) } is the number r(m) , for which m\R^k) , but m|i?„(7c) if 0 < n < r. 

EXAMPLE 1: Let the a^ = 1 and 7c = 3. Then we have the sequence 

{i?^3)} = 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, ... . 

If m = 5, this sequence reduced modulo 5 becomes 

1, 1, 1, 3, 0, 4, 2, 1, 2, 0, 3, 0, 3, 1, 4, 3, 3, 0, 1, 4, 
0, 0, 4, 4, 3, 1, 3, 2, 1, 1, 4, 1, 1, 1, 3, ..., 

and we have 

p(5) = 31, n0 = 0,"r(5) = 4. 

THEOREM 1: If {Rn} is the sequence defined by 

#0 = X> Rn = E ^n-j» n > °» 

then for n ̂  2, 

(a) i?n = F2n; 
n 

(b) 2-r ̂ j = F2n+l> 
3 =0 

PROOF: (a) For n = 2, 3, and 4, the theorem is easily established. Using 
finite induction, and assuming that for i > 4, 

#£ = F2i> 
then 

•^2( i+l ) = F2i+2 = ^ 2 i + l + ^ 2 i = F2i + F2i-1 + F 2i 

= 2F2^ + F 2 i - F2i_2 = 3F2i - ^ 2 ^ . ! ) = 3Rt - Ri-\ 

i i-1 

J = 1 J = 1 J = 1 
£ £ + 1 i +1 

J = l j - 2 J - 2 
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L, JRi+i-j " Ri 
J =1 

as required. 

(b) Applying (a) above, we have 

F2n + 1 F2(n + l) F2n Rn + l Rn 

~ HJRn + l-j - £ JRn-o ~ Y*RJ' 
J = 1 i - 1 J = 0 

A well-known identity for Fibonacci numbers is 

n 
Fn = Y.Fn-i + Is n.> 2. (1) 

i =2 
An alternate form of (1), which we obtain by renaming F0 = 1, 
F1 = 1, F2 = 2, and generalize as Theorem 2, is 

n-2 
^ = I>n-i + 3, n> 4. (2) 

i =2 

THEOREM 2: If G^ is as in Definition 1, then for all n > 2k, 

<k) = XX*U + « - i) E ^ + ^ f ^ . o) 
t = 1 i = k 

Note that G^ ~Fn as defined in (2) and hence (2) is a special case of (3). 

(k) PROOF: Let k ) 2 be fixed. If n = 2k9 then using the definition of G2^ 
twice and performing the indicated sums, we have 

u2k ~ JL> {j2k-i - 2^ Ls^ik-i-j 

= 4 k - 2 + ™%\3 ! ••• + (* - 2)Gk
(« + (fc - DC™ +Mfe_UO 

&-2 

£«,«,_,+ ( * - 1 ) s w + Mi i* . 
i = l 

(Recall that G™ = G™ = ••• = G^-i = 1.) 

Now suppose that (3) is true for m > 2&. Then 

i=l i-0 i=1 

= z ^ i . , + <* -1) "if^ - ^ s ^ + xxw< 
i=l i=k i=1 
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"fc-3 fe-2 

i = l £ = 1 
m-k 

+ a- i>2> 

(k) (k) 
( f e - 2 ) ^ - 1 ) + f f

m - ( f e - 1 ) 

(k) 
m-i 

i=k 
m+l-k 

k{k + 1) 

fc-2 

- £< 
which proves that (3) is true for n - m + 1 and hence for all n. 

We now turn to the question of divisibiltiy of the terms of the sequence 
{R^K)} by the natural number m and state the following theorem. 

(k) THEOREM 3: If {Rn } is as in Definition 2, and if m if a natural number 
such that 

k 

X>;) -Wo 
\i =1 and 

•c-4-(••(£"'-1)) d > 1, 

then m^Ryjr for any n. That i s , r(m) does not exist. 

PROOF: Let 

/ JL \ 
• 1 . M 

i = l 
If g.c.d. (w, M) = £? > 1, we show that for every n, 

R 

,(fe) 

<fc) 

<fc) 

1 (mod M). 

If n < k9 then i?^; = 1 and M\R^} , since M > 1. 

Now, if we assume that the theorem is true for any k successive terms of 
the sequence, we have 

R (k) J0M + 1 

*n + l = JlM + X 

Multiplying each of these equations successively by a^, ak-i> 9'*9 a i 9 w e ° "̂~ 
tain 
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(,k) 
akRn = akJoM + ak 

(V) 
aA+M = aiJk-iM'+ ai> 

and then adding, we have 

k k I k \ 
R™k = £ aAk\-i - M t,aiJk-i + (2><) - * + i 

i=l i -1 \i = l / 

which establishes that -#n+£ = 1 (mod Af) . 

Now we assume that for some s, 

Then d|i?e and <i|M and hence there exist integers j, r , and P2 such that 

i?s(k) = i^d = j*M + 1 = r2d + 1, 

which implies d\l9 a contradiction, and the proof is complete. 

If g.c.d. (m, M) = 1, then it is not known whether, in general, there ex-
ists n such that m\R^ . 

Finally, we examine p(jri)9 the length of the period of {Rn} modulo m. 

Waddill[2] has shown that in the special case where R0 = 0, R± = R2 = 1» 
fc = 3, ax = a2 = a3 = 1, and m = ̂ i1» q2

2, . ..5 <?ar> q. prime, then 

p(m) = l.c.m. [piql1), p(qa
2>), ..., p(^')]. (4) 

Lieuwens [1] has shown that (4) holds for an arbitrary 2-ordered sequence. 
We show that (4) is true for every k-ordered sequence. 

THEOREM 4: Let {R^ } be as in Definition 2 and let m > 1 be an arbitrary 
integer, where 

m = q^q^ ... q%» , q. prime, 

then 

p(m) = l.c.m. Ipiql1), p ( ^ 2 ) , .... p(<?^)]. 
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PROOF: For every integer <??*, there exists an index n« such that for n > nn9 

C p ( ? ; o E *»*' (mod qJO, J = 0, 1, 2, ... . 

Let n* = max(n0i, n^ . .., n0r) . Then for every integer £ > Q, j > 0, 

Rn*)+jp(q-<)+t E ^rc*** (mod <?£') 

for all £. Hence, for { = 1 , 2 , say, 

R$ijp(q^+t =Rtflt (mod ?»i) 

Since g.c.d. (̂  , q ) = 1, then the smallest integer, p, such that 

occurs when 

p = l.c.m. [pGrf1), p(qa
z
2)l, 

since p must be a multiple of both piq®1) and p(qa2). The general case fol-
lows similarly. 
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