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The Catalan numbers 

Cn = (2nn)/(n + l) 

belong to the class of advanced counting numbers that appear as naturally 
and almost as frequently as the binomial coefficients$ due to the exten-
sive variety of combinatorial objects counted by them (see [1]9 [2])« 

The purpose of this note is to give a combinatorial proof of the fol-
lowing property of the Catalan sequence using a lattice path interpreta-
tion. 

Theorem 

Cn is odd if and only if n = 2r - 1 for some positive integer v. 

Proof: The proof is based mainly on the following observation: If X 
is a finite set and a is an involution on X with fixed point set Xa

s then 
|z| = |j a| (mod 2); i.e.s \x\ and |j a| have the same parity,, 

Now let Dn denote the set of lattice paths in the first quadrant from 
the origin to the point (2ns 0) with the elementary steps 

x : (a, b) -»• (a + 1, b + 1) 

xi (a, b) -*- (a + 1, b - 1). 

It is well known that \Dn\ = Cn (see [2], [3]). Define a : Dn -* Dn by 
reflecting these paths about the line x = n* The fixed point set D% of 
a consists of all paths in Dn symmetric with respect to the line x - n. 

Now define an involution 3 on D% as follows: for w-W^uuWi e &% with 
\wi\ = 1^21 = n ~~ * a n d u e {x* ^ 3 s e t 

1 w1uuw2
 i f ^i 4 Dn-i 

I w otherwise. 

Of course the set Dn-i is empty unless n is odd. Hence9 we can put 
2 

Cn-i ~ 0 f° r n even. 
2 
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Note that 

2 I 

since w -*• W1 is an obvious bijection between the sets D* and Dn-i. Thus 
we have 2 

£n = Cn-i (mod 2). (1) 
2 

If Cn is odd, then induction on n gives (n - l)/2 = 2r - 1 for some r so 
that n - 2r+1 - 1 is of the required form. Of course, C2-i ~ ^1 = ^' 

The converse also follows immediately from (1) by a similar inductive 
argument. 
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