A GENERALIZATION OF EULER's ϕ-FUNCTION

P. G. GARCIA
and
STEVE LIGH
University of Southwestern Louisiana, Lafayette, LA 70504
(Submitted November 1981)

Euler's ϕ-function, $\phi(n)$, denotes the number of positive integers less than n and relatively prime to it. There are many generalizations of this famous function; for example, see [1; 2; 3]. In this note, we extend the ϕ-function to an arithmetic progression

$$
D(s, d, n)=\{s, s+d, \ldots, s+(n-1) d\}
$$

where $(s, d)=1$. A formula will be established giving the number of elements in $D(s, d, n)$ that are relatively prime to n. Observe that $\phi(n)$ is the number of elements in the progression $D(1,1, n)$ that are relatively prime to n.

Before we establish the formula, we begin with some preliminary remarks. Let

$$
P(x, d, n)=\{x, x+d, \ldots, x+(n-1) d\}
$$

be an arbitrary progression of nonnegative integers. Note that if (x, d) $=1$, then $P(x, d, n)=D(x, d, n)$.

Lemma 1

Let $P(x, d, n)$ be an arbitrary progression with $(d, n)=g$. Suppose that $n=g k$ and $d=g k_{1}$. Then no two elements in each of the g blocks of k consecutive elements are congruent (mod n). Furthermore, every block contains the same residues ($\bmod n$).

Proof: $x+r d \equiv x+t d(\bmod n)$ if and only if $r \equiv t(\bmod k)$.
Definition: Let $\phi(s, d, n)$ denote the number of elements in the arithmetic progression $D(s, d, n)$ that are relatively prime to n.

Remark: $\phi(1,1, n)=\phi(n)=\phi(s, 1, n)$.

Theorem 1

Suppose $(m, n)=1$. Then

$$
\phi(s, d, m n)=\phi(s, d, m) \phi(s, d, n) .
$$

Proof: Write the elements of $D(s, d, m n)$ as follows:
$\left.\begin{array}{llll}s & s+d & s+2 d & \cdots \\ s+m d & s+(m+1) d & s+(m+2) d & \cdots \\ \vdots & & & \\ s+(n-1) m d & & & \\ s+(2 m-1) d\end{array}\right]$

Since the elements in the first row are elements of the progression $D(s, d, m)$, the number of elements in it that are relatively prime to m is $\phi(s, d, m)$. Let C_{i} denote the column headed by $s+i d$. If $(s+i d, m)$ >1, no element of C_{i} is relatively prime to m. If $(s+i d, m)=1$, every elements of C_{i} is prime to m. So to complete the proof, we need to show that $\phi(s, d, n)$ of the elements in each column of C_{i} are prime to n.

Let $(d, n)=g$. Since $(m, n)=1$, it follows that $(m d, n)=g$, and by Lemma 1 , there are g blocks of k consecutive elements in which no two of them are congruent $(\bmod n)$. Thus, $a l l$ we need to show is that each element in the first block of C_{i} is congruent modulo n to an element in the first block of $D(s, d, n)$. This would imply that there are $\phi(s, d, n)$ elements in C_{i} that are relatively prime to n.

Suppose $(s+i d)+j m d, 0 \leqslant j \leqslant k-1$, is an arbitrary element in the first block of C_{i}. Then there is an integer q such that

Thus

$$
(i+j m)=q k+r, 0 \leqslant r<k
$$

$$
(s+i d)+j m d \equiv s+r d(\bmod n),
$$

where $s+r d$ is an element of $D(s, d, k)$.
Lemma 2
Let p be a prime and k a positive integer. Then

$$
\phi\left(s, d, p^{k}\right)=\left\{\begin{array}{cl}
p^{k}\left(1-\frac{1}{p}\right), & \text { if } p \nmid d \\
p^{k}, & \text { if } p \mid d
\end{array}\right.
$$

Proof: If $p \mid d$, then $(s, d)=1$ implies that $\left(s+i d, p^{k}\right)=1$ and hence every element in $D\left(s, d, p^{k}\right)$ is relatively prime to p. If $p \nmid d$, then all p-consecutive elements in $D\left(s, d, p^{k}\right)$ form a complete residue system $(\bmod p)$. Thus, each has $(p-1)$ elements relatively prime to p. Since there are p^{k-1} blocks of p-consecutive elements in $D\left(s, d, p^{k}\right)$, it follows that

$$
\phi\left(s, d, p^{k}\right)=p^{k-1}(p-1)=p^{k}\left(1-\frac{1}{p}\right), \text { if } p \nmid d .
$$

Now combining Theorem 1 and Lemma 2, we have a formula for $\phi(s, \alpha, n)$.

Theorem 2

Let $D(s, d, n)$ be an arithmetic progression with $n=p_{1}^{a_{1}} p_{2}^{\alpha_{2}} \ldots p_{j}^{a_{j}}$. Then, for $n>1$,

$$
\phi(s, d, n)=\left\{\begin{array}{l}
n, \text { if } p_{i} \mid d \text { for all } i \\
n \Pi\left(1-\frac{1}{p_{i}}\right) \text { for all } p_{i} \nmid d .
\end{array}\right.
$$

Remark: $\phi(s, d, n)$ is independent of the first element in the progression $\overline{D(s, d}, n)$.

The following corollaries are immediate.
Corollary 1

$$
\phi(n)=\phi(1,1, n)=n \Pi\left(1-\frac{1}{p}\right) .
$$

Corollary 2
If $(n, d)=1$, then $\phi(s, d, n)=\phi(n)$.

Corollary 3

Let a and b be any two positive integers. Then

$$
\phi(a b)=\phi(a) \phi(s, a, b)=\phi(b) \phi(s, b, a)
$$

Now we return to the arbitrary progression $P(x, d, n)$. Let $\Phi(x, d, n)$ denote the number of elements in $P(x, d, n)$ that are relatively prime to n. The proof of the following result is immediate.

Theorem 3
Suppose $P(x, d, n)$ is an arbitrary progression with $(x, d)=g$. Then
(i) If $(g, n) \neq 1$, then $\Phi(x, d, n)=0$,
(ii) If $(g, n)=1$, then $\Phi(x, d, n)=\Phi\left(\frac{x}{g}, \frac{d}{g}, n\right)$.

REFERENCES

1. H. L. Alder. "A Generalization of the Euler's ϕ-Function." American Math. Monthly 65 (1958):690-692.
2. Eckford Cohen. "Generalizations of the Euler ϕ-Function." Scripta Math. 23 (1957):157-161.
3. V. L. Klee, Jr. "A Generalization of Euler's ϕ-Function." American Math. Monthly 55 (1948):358-359.
[Feb.
