A PROPERTY OF FIBONACCI AND TRIBONACCI NUMBERS

CHRISTOPHER D. GODSIL
and
REINHARD RAZEN
Montanuniversität, A-8700 Leoben, Austria
(Submitted October 1981)
\section*{1. INTRODUCTION}

The Fibonacci numbers are defined by setting

$$
a_{1}=\alpha_{2}=1 \text { and } a_{n+1}=a_{n}+a_{n-1} \text { for } n \geqslant 2
$$

A related family of sequences are the t-bonacci numbers (where $t \geqslant 2$ is an integer). These are defined by setting
and

$$
\alpha_{1}=1, \alpha_{n}=2^{n-2} \text { for } 2 \leqslant n \leqslant t
$$

$$
a_{n+1}=a_{n}+\cdots+a_{n-t+1} \text { for } n \geqslant t
$$

Thus, for $t=2$ we obtain the Fibonacci numbers again, and for $t=3$ we obtain the so-called Tribonacci numbers.

The Fibonacci numbers have many interesting properties. The property of interest to us here is that this sequence satisfies the equation

$$
\Delta a_{n}=a_{n-1} \quad(n \geqslant 2)
$$

where Δ denotes the forward difference operator. The Tribonacci numbers satisfy

$$
\Delta^{3} a_{n}=2 a_{n-2} \quad(n \geqslant 3)
$$

We call a sequence $\left(\alpha_{n}\right)$ that satisfies an equation of the form

$$
\begin{equation*}
\Delta^{k} a_{n}=m a_{n-r} \quad(n>r) \tag{1}
\end{equation*}
$$

a self-generating sequence with parameters (k, m, r). We abbreviate this to $\operatorname{SGS}(k, m, r)$. [We will work under the convenient assumption that k, m, and r are integers and that $k \geqslant 1$. Similarly, our sequences (a_{n}) will be integral.]

Thus, the Fibonacci numbers are an $\operatorname{SGS}(1,1,1)$ and the Tribonacci numbers form an $\operatorname{SGS}(3,2,2)$. This immediately suggests the question of whether, for any $t \geqslant 4$, the t-bonacci numbers form a self-generating sequence. The main result of this paper is as follows.

A PROPERTY OF FIBONACCI AND TRIBONACCI NUMBERS

Theorem 1

The Fibonacci sequence is an $\operatorname{SGS}(1,1,1)$; the $\operatorname{Tribonacci}$ sequence is an $\operatorname{SGS}(3,2,2)$. For $t \geqslant 4$, no t-bonacci sequence is self-generating.

2. PROOF OF THEOREM 1

Let

$$
F(x)=\sum_{n=1}^{\infty} \alpha_{n} x^{n}
$$

denote the generating function (G.F.) of the sequence (α_{n}) and let $\Delta^{j} F(x)$ denote the G.F. of the sequence of j th forward differences ($\Delta^{j} a_{n}$).

Lemma 1

For $j \geqslant 1$, we have

$$
\begin{equation*}
\Delta^{j} F(x)=\frac{1}{x^{j}}\left[(1-x)^{j} F(x)-x p_{j-1}(x)\right], \tag{2}
\end{equation*}
$$

where $p_{j-1}(x)$ denotes a polynomial of degree at most $j-1$.
Lemma 1 can be proved by induction on j. We leave the details as an exercise.

Now let $\left(\alpha_{n}\right)$ be an $\operatorname{SGS}(k, m, r)$. In order to satisfy (1), we have to subtract from $\Delta^{k} F(x)$ its first r terms [i.e., a polynomial $q_{p}(x)$ of degree at most $r]$ and equate the rest with $m x^{r} F(x)$:

$$
\frac{1}{x^{k}}\left[(1-x)^{k} F(x)-x p_{k-1}(x)\right]-q_{r}(x)=m x^{r} F(x)
$$

From this equation, we immediately obtain:

Theorem 2

The generating function of an $\operatorname{SGS}(k, m, r)$ is of the form

$$
\begin{equation*}
F(x)=\frac{p_{k+r}(x)}{(1-x)^{k}-m x^{k+r}} \tag{3}
\end{equation*}
$$

where $p_{k+r}(x)$ is a polynomial of degree at most $k+r$ with zero constant term. \square

Remark 1: It can be shown that any sequence with generating function of the form given in (3) is an $\operatorname{SGS}(k, m, r)$. We will not prove this because we will not make use of it here.

A PROPERTY OF FIBONACCI AND TRIBONACCI NUMBERS

The G.F. for the t-bonacci sequence is

$$
F(x)=\frac{x}{1-x-\cdots-x^{t}} ;
$$

hence, a necessary condition for this sequence to be self-generating is that the zeros $\alpha, \beta, \gamma, \ldots$ of $1-x-\cdots-x^{t}$ are also zeros of the polynomial $(1-x)^{k}-m x^{k+r}$ appearing in the form of $F(x)$ given in Theorem 1. Our aim is to show that for $t \geqslant 4$ we can find three zeros α, β, γ for which this necessary condition is violated. Thus, it will be useful to list some facts about the roots of

$$
\begin{equation*}
1-x-\cdots-x^{t}=0 \tag{4}
\end{equation*}
$$

Remark 2: We observe that no root of (4) equals 1. Now, multiplying (4) by $1-x$ and collecting terms transforms (4) into

$$
\begin{equation*}
x^{t+1}-2 x+1=0 \tag{5}
\end{equation*}
$$

Remark 3: A geometrical argument about the curves $y=x^{t+1}$ and $y=2 x-1$ shows that for odd t there is exactly one, for even t there are exactly two, real roots of (5) not equal to 1 . For all t, one of these tends monotonically to -1 from the left as t increases. In [1], the positive real roots have been calculated. For $t=6$ this root is $\alpha=0.504138 \ldots$; hence, for $t \geqslant 6$ we have $\alpha<0.505$.

Remark 4: In [2], it was proved that (5) has exactly one root z with $|z|$ <1 and one with $|z|=1$; all other roots satisfy $|z|>1$. We shall now give an upper bound for the absolute values of these roots.

Lemma 2
The roots of (5) with $|z|>1$ satisfy $|z|<3$.
Proof: Let z be a root of (5) with $|z|>1$. Then, since

$$
|z|\left|z^{t}-2\right|=|-1|=1,
$$

we have $\left|z^{t}-2\right|<1$, which implies $\left|z^{t}\right|<3$ and, therefore, $|z|<\sqrt[t]{3}$. \square
Combined with the previous lemma, our next result approximately determines the positions of the roots of (5).

Lemma 3
For each j with $1 \leqslant j \leqslant \frac{t-1}{2}$, Eq. (5) has a root z_{j} with

$$
\arg z_{j} \in I_{j}=\left(\frac{2 j \pi}{t}, \frac{2 j \pi}{t-1}\right]
$$

A PROPERTY OF FIBONACCI AND TRIBONACCI NUMBERS

Proof: We use Gauss's method for trinomial equations (see e.g. [3], pp. 397-398). Write $z=\rho(\cos \varphi+i \sin \varphi)$. Then, if $z^{t+1}-2 z+1$ is zero, we must have

$$
\begin{align*}
& \rho^{t+1} \cos (t+1) \varphi-2 \rho \cos \varphi+1=0 \tag{6}\\
& \rho^{t+1} \sin (t+1) \varphi-2 \rho \sin \varphi=0 \tag{7}
\end{align*}
$$

From (7), we get

$$
\rho^{t}=\frac{2 \sin \varphi}{\sin (t+1) \varphi}
$$

Substituting this into (6) and using the trigonometric addition formulas, we obtain

$$
\begin{equation*}
\rho=\frac{\sin (t+1) \varphi}{2 \sin t \varphi} . \tag{8}
\end{equation*}
$$

Upon substitution into (7), this yields

$$
\begin{equation*}
2^{t+1} \sin ^{t} t \varphi \sin \varphi-\sin ^{t+1}(t+1) \varphi=0 \tag{9}
\end{equation*}
$$

which determines φ. Denote the left-hand side of (9) by $f(\varphi)$. Then

$$
f\left(\frac{2 j \pi}{t}\right)<0
$$

whereas

$$
f\left(\frac{2 j \pi}{t-1}\right) \geqslant 0
$$

By the continuity of f, the lemma follows. \square
Now let $t \geqslant 4$ and let α, β, and γ denote three nonconjugate distinct roots of (4). If the t-bonacci sequence was self-generating, we would have $(1-\alpha)^{k}=m \alpha^{k+r}$ as well as $(1-\beta)^{k}=m \beta^{k+r}$ for some k, m, and r; hence,

$$
\left(\frac{1-\alpha}{1-\beta}\right)^{k}=\left(\frac{\alpha}{\beta}\right)^{k+r}
$$

An analogous equation holds for α and γ. Taking logarithms, we get

$$
k \log \frac{1-\alpha}{1-\beta}-(k+r) \log \frac{\alpha}{\beta}=0
$$

and

$$
k \log \frac{1-\alpha}{1-\gamma}-(k+r) \log \frac{\alpha}{\gamma}=0
$$

To obtain nontrivial solutions for given k and r, the two equations must be linearly dependent. Therefore, considering the absolute values, we must have

$$
\begin{equation*}
\log \left|\frac{1-\alpha}{1-\beta}\right| \log \left|\frac{\alpha}{\gamma}\right|=\log \left|\frac{1-\alpha}{1-\gamma}\right| \log \left|\frac{\alpha}{\beta}\right| . \tag{10}
\end{equation*}
$$

Denote the left- and right-hand sides of, (10) by L and R, respectively. Our aim is to find roots α, β, and γ for which $L \neq R$.

Let t be even, $t \geqslant 6$. Take as α the positive real root, as β the negative real root, and as γ a root with $0<\arg \gamma<2 \pi / 5$. (Such a exists, by Lemma 3.) Then the following inequalities hold, by virtue of Remark 3 and Lemma 2:

$$
\begin{array}{rr}
0.5<|\alpha|<0.505 & 0.495<|1-\alpha|<0.5 \\
|\beta|<1.201 & 2<|1-\beta| \\
1<|\gamma| & |1-\gamma|<1.304
\end{array}
$$

From these, we calculate $L>0.947$ and $R<0.849$.
Now let t be odd, $t \geqslant 7$. As α we take the positive real root, as β a root with $6 \pi / 7<\arg \beta<\pi$, and as γ a root with $0<\arg \gamma<2 \pi / 6$. The resulting inequalities are

$$
\begin{array}{rl}
0.5<|\alpha|<0.505 & 0.495<|1-\alpha|<0.5 \\
|\beta|<1.17 & 1.94<|1-\beta| \\
1<|\gamma| & \\
11-\gamma \mid<1.094
\end{array}
$$

and we obtain $L>0.926$ and $R<0.675$.
The remaining cases, $t=4$ and $t=5$, can be settled by approximate calculation of φ and ρ using (8) and (9); again, roots can be found for which $L \neq R$. The details will be omitted here.

REFERENCES

1. I. Flores. "Direct Calculation of k-Generalized Fibonacci Numbers." Fibonacci Quarterly 5 (1967):259-266.
2. E. P. Miles, Jr. "Generalized Fibonacci Numbers and Associated Matrices." American Mathematical Monthly 67 (1960):745-752.
3. H. Weber. Lehrbuch der AZgebra. Braunschweig: Vieweg, 1898.
