$\diamond \diamond \diamond \diamond \stackrel{\rightharpoonup}{*}$
 ON FIBONACCI AND LUCAS NUMBERS WHICH ARE SUMS OF PRECISELY FOUR SQUARES

NEVILLE ROBBINS
San Francisco State University, San Francisco, CA 94123 (Submitted April 1981)

INTRODUCTION

A well-known theorem of Lagrange states that every positive integer is a sum of four squares [4, p. 302]. In this article we determine which Fibonacci and Lucas numbers are sums of not fewer than four positive squares. The nth Fibonacci and Lucas numbers are denoted $F(n), L(n)$, respectively, in order to avoid the need for subscripts that carry exponents.

PRELIMINARIES
(1) $m \neq a^{2}+b^{2}+c^{2}$ iff $m=4^{j} k$, with $j \geqslant 0$ and $k \equiv 7(\bmod 8)$
(2) $F(2 n)=F(n) L(n)$
(3) $L(2 n)=L(n)^{2}-2(-1)^{n}$
(4) $\quad F(m+n)=F(m) F(n-1)+F(m+1) F(n)$
(5) $F(12 n \pm 1) \equiv 1(\bmod 8)$
(6) $\quad F(n) \equiv 7(\bmod 8)$ iff $n \equiv 10(\bmod 12)$
(7) $F(n) \equiv 0(\bmod 4)$ implies $F(n) \equiv 0(\bmod 8)$
(8) $L(n) \not \equiv 0(\bmod 8)$
(9) $L(n) \equiv 7(\bmod 8)$ iff $n \equiv 4,8$, or $11(\bmod 12)$
(10) $L(n) \equiv 28(\bmod 32)$ iff $n \equiv 21(\bmod 24)$
(11) $L(12 n) \equiv 2(\bmod 32)$
(12) If $j \geqslant 2$, then $4^{j} \mid F(n)$ iff $n=3\left(4^{j-1}\right) m$, with $(6, m)=1$.

Remarks: (1) is stated on p. 311 of [4]. (2) and (3) are 12 b , d , and e on p. 101 of [1]. (4) is (1) on p. 289 of [2]. (5), (6), and (7) are established by observing the periodic residues of the Fibonacci sequence (mod 8), namely: $0,1,1,2,3,5,0,5,5,2,7,1,0,1$, etc. (8) and (9) are established by observing the periodic residues of the Lucas sequence (mod 8), namely: $2,1,3,4,7,3,2,5,7,4,3,7,2,1$, etc. (10) and (11) are established by observing the periodic residues of the Lucas sequence (mod 32), namely: $2,1,3,4,7,11,18,29,15,12,27$, $7,2,9,11,20,31,19,18,5,23,28,19,15,2,17,19,4,23,27,18$, $13,31,12,11,23,2,25,27,20,15,3,18,21,7,28,3,31,2,1$, etc. Finally, (12) follows from (37) on p. 225 of [3].

THE MAIN THEOREMS
Theorem 1

$$
L(n) \neq a^{2}+b^{2}+c^{2} \text { iff } n \equiv 4,8, \text { or } 11(\bmod 12) \text { or } n \equiv 21(\bmod 24) .
$$

ON FIBONACCI AND LUCAS NUMBERS WHICH ARE SUMS OF PRECISELY FOUR SQUARES

Proof: If $L(n) \neq a^{2}+b^{2}+c^{2}$, then (1) implies $L(n)=4^{j} k$, with $j \geqslant 0$ and $\overline{k \equiv 7}(\bmod 8) . ~(8)$ implies $j=0$ or $j=1$. Now (9) and (10) imply $n=4,8$, or $11(\bmod 12)$ or $n \equiv 21(\bmod 24)$. Conversely, if $n \equiv 4,8$, or $11(\bmod 12)$ or $n \equiv 21(\bmod 24)$, then (9) and (10) imply $L(n) \equiv 7(\bmod 8)$ or $L(n) \equiv 28(\bmod 32)$, i.e., $L(n)=4^{j} k$, with $j=0$ or $j=1$, and $k \equiv 7$ (mod 8). Therefore, (1) implies $L(n) \neq a^{2}+b^{2}+c^{2}$.

Lemma 1

$$
F\left(3 \star 4^{j-1}\right) / 4^{j} \equiv 1(\bmod 8) \text { for } j \geqslant 2
$$

Proof: (Induction on j) If $j=2$, then

$$
F(12) / 16=144 / 16=9 \equiv 1(\bmod 8)
$$

Now let $j \geqslant 3$.

$$
\frac{F\left(3 \star 4^{j}\right)}{4^{j+1}}=\frac{F\left(4 \star 3 \star 4^{j-1}\right)}{4^{j+1}}=\frac{F\left(3 \star 4^{j-1}\right)}{4^{j}} \quad \frac{L\left(3 \star 4^{j-1}\right) L\left(6 \star 4^{j-1}\right)}{4}
$$

by (2). (11) implies $L\left(3 \star 4^{j-1}\right) \equiv 2(\bmod 32)$; (3) implies $L\left(6 \star 4^{j-1}\right) \equiv 2$ (mod 32). Thus

$$
L\left(3 \star 4^{j-1}\right) L\left(6 \star 4^{j-1}\right) \equiv 4(\bmod 32)
$$

which implies $L\left(3 \star 4^{j-1}\right) L\left(6 \star 4^{j-1}\right) / 4 \equiv 1(\bmod 8)$. By the induction hypothesis, $F\left(3 \star 4^{j-1}\right) / 4^{j} \equiv 1(\bmod 8)$. Therefore,

$$
F\left(3 \star 4^{j}\right) / 4^{j+1} \equiv 1 \star 1 \equiv 1(\bmod 8)
$$

Lemma 2
$F\left(3 \star 4^{j-1} m\right) / 4^{j} \equiv m(\bmod 8)$ for $j \geqslant 2$ and $m \geqslant 0$.
Proof: (Induction on m) Since $F(0)=0$, Lemma 2 holds for $m=0$.
implies

$$
\begin{align*}
F\left(3 \star 4^{j-1}(m+1)\right) / 4^{j}= & F\left(3 \star 4^{j-1} m+3 \star 4^{j-1}\right) / 4^{j} \\
= & \left(F\left(3 \star 4^{j-1} m\right) / 4^{j}\right) F\left(3 \star 4^{j-1}-1\right) \\
& +F\left(3 \star 4^{j-1} m+1\right)\left(F\left(3 \star 4^{j-1}\right) / 4^{j}\right)
\end{align*}
$$

by the induction hypothesis, $F\left(3 \star 4^{j-1} m\right) / 4^{j} \equiv m(\bmod 8)$; (5) implies

$$
F\left(3 \star 4^{j-1}-1\right) \equiv F\left(3 \star 4^{j-1} m+1\right) \equiv 1(\bmod 8) ;
$$

Lemma 1 imp1ies

$$
F\left(3 \star 4^{j-1}\right) / 4^{j} \equiv 1(\bmod 8)
$$

ON FIBONACCI AND LUCAS NUMBERS WHICH ARE SUMS OF PRECISELY FOUR SQUARES

Therefore,

$$
F\left(3 \star 4^{j-1}(m+1)\right) / 4^{j} \equiv m \star 1+1 \star 1 \equiv m+1(\bmod 8)
$$

Theorem 2
$F(n) \neq a^{2}+b^{2}+c^{2}$ iff $n \equiv 10(\bmod 12)$ or $n=3 \star 4^{j-1} m$, with $j \geqslant 2$ and $m \equiv 7(\bmod 8)$.

Proof: If $F(n) \neq a^{2}+b^{2}+c^{2}$, then (1) implies $F(n)=4^{j} t$ with $j \geqslant 0$ and $\overline{t \equiv 7}(\bmod 8)$. (7) implies $j \neq 1$. If $j=0$, then (6) implies $n \equiv 10$ (mod 12). If $j \geqslant 2$, then (12) implies $n=3 \star 4^{j-1}$. Now Lemma 2 implies $m \equiv t \equiv 7(\bmod 8)$. Conversely, if $n \equiv 10(\bmod 12)$, then (6) implies $F(n) \equiv 7(\bmod 8)$, hence (1) implies $F(n) \neq a^{2}+b^{2}+c^{2}$. If $n=3 \star 4^{j-1} m$ with $j \geqslant 2$ and $m \equiv 7(\bmod 8)$, then (12) implies $F(n)=4^{j} t$. Lemma 2 implies $t=E(n) / 4^{j} \equiv m(\bmod 8)$. Since $t \equiv 7(\bmod 8)$, (1) implies

$$
F(n) \neq a^{2}+b^{2}+c^{2}
$$

REFERENCES

1. R. G. Archibald. An Introduction to the Theory of Numbers. Merrill, 1970.
2. D. M. Burton. Elementary Number Theory. Allyn \& Bacon, 1976.
3. J. H. Halton. "On the Divisibility Properties of Fibonacci Numbers." Fibonacci Quarterly 4 (1966):217-240.
4. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 4th ed., Oxford University Press, 1965.
