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1. INTRODUCTION 

We consider here intersections of positive integer sequences 

{wn(wQy W±; p, -<?)} 

which satisfy the second-order linear recurrence relation 

Wn = PWn-l + ^n-2> 

where p, q axe positive integers,p ^ q9 and which have initial terms W0, 
W-L. Many properties of {wn} have been studied by Horadam [2; 3; 4] (and 
elsewhere), to whom some of the notation is due. We look at conditions 
for fewer than two intersections, exactly two intersections, and more than 
two intersections. This is a generalization of work of Stein [5] who ap-
plied it to his study of varieties and quasigroups [6] in which he con-
structed groupoids which satisfied the identity a{(a • ba)a) = b but not 
{a(ab • a))a = b. 

2. FEWER THAN TWO INTERSECTIONS 

We shall first establish some lemmas which will be used to show that two 
of these generalized Fibonacci sequences with the same p and q generally 
do not meet. 

Suppose the integers aQ9 a , a2, a3, bQ9 and bx are such that 

a2 > b0 > aQ and a3 > b1 > a1. 

These conditions are not as restrictive as they might appear, although 
they may require the sequences being compared to be realigned by redefin-
ing the initial terms. We consider the sets 

{wn(aQ9 a±; p, -q)} and {wn(bQ, b1; p9 -q)}9 

and we seek an upper bound L for the number of a / s (b1 > ax > b0) such 
that 

{wn(aQ, a1; p, -q)} n {wn(b0» b1; p, -q)} + 0. 
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We shall show that if A(b) = b - L (b = bx - bQ) is the number of a^s-
such that if this intersection is nonempty, then lim A(Jb) lb = 1; that is, 

b + oo 

these generalized sequences do not meet, because if 11m A (n) /n - 1, then 
n -> oo 

we can say that for the predicate P about positive integers n {n : P(n) is 
true} has density 1, which means that P holds "for almost all n." 

We first examine where {wn(aQ9 a1; p, -q)} and {wn(b0, b1; p, -q)} 
might meet. Since a0 < bQ and a± < b19 then an < bn for all n by induc-
tion. Thus, If ak e {wn(bQ9 bl9 p, -q)} and ak = bi9 then i must be less 
than k. 

Now 

so that 

that is, 

Thus, if 

then 

a2 > bQ, and a3 > b19 

ah = pa3 + qa2 > pb1 + ̂ &0 = & , and so on; 

ak ^ bk-i f o r ^ ̂  3. 

â  e iwn(b09 bx% p, -4)}, 

fc^_2 < ak < bk; that is, afe = bk_1. 

We next examine the a1 for which afc = bk_1. Since 

ak = a^-i + qa0uk_2 (from (3.14) of [2]) 

where {un} = {wn(l9 p; p, -4)} is related to Lucasf sequence, then 

ak = bk_1 
is equivalent to 

bk_j_ = a- ^ ^ + qa0uk_z or ax = (Ẑ _i - QaQuk_2) /uk_±. 

We now define 
xk = (&*-i " qaouk-2)/uk-i> 

and we shall show that xl9 x29 x39 ••• has a limit X9 that it approaches 
this limit in an oscillating fashion, and that xk + 1 - xk approaches zero 
quickly. 

Lemma 1 

xk+i ~ xk = (~q)k~1(b1 - bQ - qa0)/ukukmml. 

bk - qaQuk_1 bk_1 - qaQuk_2 
Proof: XT,., - Xy = 

(bkuk_x - bk_1uk) + qaQ(ukuk_2 - u\_J 

1983] 
UkUk-1 
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Now 
{-q)k-x = u\_x - ukuk_2, (from (27) of [3]) 

Z>kuk-i = ^\u\-\ + 3*owk-iMk-2' (from (3.14) of [2]) 

t>k-iuk = b1ukuk_2 + qb0ukuk_3, 
so that 

&k"k-l ~ ̂ -lMJc = &l("k-l - UkMk-2) + ^bQ<-Uk-lUk-2 ~ UkUk-J 

= (-<?)?c-1fc1 - C - ? ) * - 1 ^ 
since 

(~q)k~2 = uk_1uk_2 - ukuk_3 (from 4.21) of [2]). 

This gives the required result. 

Lemma 2 

l^k+i ~ xk\ < l̂ i ~ &o " qa0\/a2k'^, where a, 3> |a| > |g|, are the 
roots, assumed distinct, of 

x2 - px - q = 0. 

Proof: uk = puk_1 + quk_2 ^ Vuk-\ 

> quk_x (p > 4) 

and 
ukuk_x > q 2 k ' \ 

Thus 
kfc+i - xk\ < \(hi - ho - qa0)/qk~2\, 

which implies that the xk*s converge to a limit X in an oscillating fa-
shion. Now 

and 

lk-2 _ |„|k-2|g|fc-2 < a 2 ^ - 4 

kk+i " xk\ < \bi - bo - qa0\/a2k~h. 

Theorem 1 

If a0 is a positive integer and {wn} is a generalized Fibonacci se-
quence, then for almost all a19 {wn(a0, ax; p, -q)}D{wn} consists of at 
most the element a0. 

Proof: It follows from Lemma 2 that at most one xk is an integer for 
those k which satisfy the inequality 

(b1 - b0 .- qa0)/a2k~h < 1, 
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or, equivalently, the inequality 

k > 2 + log(fc1 - &0 - qa0)1/2 

in which log stands for logarithm to the base |a|. Thus the total number 
of k1 s for which xk is an integer (since ax must be an integer) is at 
most 

L = 2 + logO^ - Z>0 - qa0)1/2. 

If we choose b0 such that bQ = om and b1 = om+19 om e {wn(cQ, c1; p9 -q)} , 
where cm + 1/cm<l [1 + a], then L is small in comparison with b - bQ. There 
is such an integer m: 

cm + ±I°m ^ [ 1 + Ot] f o r a l l k > 777 
since 

lim ok+1/ok = a. ((1.22) of [4]) 

We could take b0 = cm+1 or cm+1 and still conclude that the total number 
of ax*s (b0 < a1 < b±) for which {wn(aQ9 a±; p9 -q)} meets {wn(bQ9 b1; 
p9 -q)} is small in comparison with b = b1 - bQ. 

Thus 
A(b) = b - L9 

and since 
lim(log b)/b = 0, 

we have 
lim A (b)/b = 1 - lim(2 + log(6 - qa0)1/2)/b 
b + <x> &-*00 

= 1, as required. 

Thus9 for allmost all a1 , {wn} D {wn(aQ9 a1; p5 -q)} contains a0 only or 
is empty. 

3. EXACTLY TWO INTERSECTIONS 

Lemma 3 

If ai = bj and a^_x ^ bj-i* t n e n f o r ^ ̂  I 

fc^ + r i {wn(a0, a±; p, -q)} and ai + v fi {wn(b0, b1; p, -q)}. 

Proof: If ai_1 > ij.15 then ai + 1 > bj + l , and 

since 

Thus 
^ < ̂  + 1 < ai + 1 and a.+1 < bj + 2 < ai + 2, 

and, by induction, 
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Hence, bj+r $. {wn(aQ9 ax; p, -q)}9 v ^ 1, from which the lemma follows. 

Theorem 2 

If {ic?n(a05 <Zi; p5 -q)} and {wn(2?0, &i; p5 -q)} meet exactly twice, 
then at least one of these statements holds: 

a0 £-{wn(bQ9 b1; p, -q)}, bQ e {wn(aQ9 a1; p, -q)}. 

As an illustration of Theorem 2, consider the sequences 

•1, 4, 5, 9, 14, ..., and 1, 1, 2, 3, 5, 8, 13, ...; 

the second of these is the sequence of ordinary Fibonacci numbers 

{wn(l, 1; 1, -1)}. 

Proof of Theorem 2: If a,; = 2?j- , i, J > 0, and the sequences meet ex-
actly twice, then a^ _ 1 4- bj _ x; otherwise the sequences would be identical 
from those terms on, as can be seen from Theorem 3. (We need i, j > 0, 
since we have not specified an9 bn for n < 0.) Thus, from Lemma 3, 

bj+r t iwn(aQ9 a±; p, -q)} and ai+r t {wn(bQ9 b1; p, -<?)}, r > 1. 

So an = fem, 0 < m < j, 0 < n < i , and, again, an-1 ^ bm_1; otherwise the 
sequences would be identical from those terms on. But from Lemma 3 this 
implies that 

bm+T t {wn(aQ9 ax; p, -q)} and an+r t {wn(bQ9 b±; p, -q)}9 r > 1, 

which contradicts the assumption that a^ = tj. So the only other possi-
bilities are that a0 = bm for some m or an = &0 for some n, as required. 
This establishes the theorem. 

4. MORE THAN TWO INTERSECTIONS 

Theorem 3 

If {wn(aQ9 ax; p, -q)} and {wn(bQ9 b1; p9 -q)} have two consecutive 
terms equal, then they are identical from those terms on. 

Proof: If ai = bj and ai_1 = bj_l9 then 

and the result follows by induction. 
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REMARKS 

A. It is of interest to note that the number of terms of {wn(aQ9 a1; p9 
-q)} not exceeding b0 is asymptotic to 

log(&0(a - 3)/(axa 4- a0ag)). (Horadam [4]) 

B. As an illustration of Theorem 19 if we consider the case where p = q 
= 1, and if we take a0 = 1, b0 = 100, b1 = 191, then b2 = 291, b3 = 392, 
bh = 683. When: 

a± = 100, ax = b0; a± = 190, a2 = &1; ax = 145, a3 = 2?2; 

ax = 130, ah = fc3; ax = 136, a5 = Z?̂ . 

Thereafter, there are no more integer values of a± that yield ak = bk_1. 
Thus 100, 130, 136, 145, and 190 are the only values of a± (100 < ax < 191) 
for which 

{wn(l, a±; 1, -1)} n{w„(100, 191; 1, -1)} 4 0. 

Also, (y(4 + log 90)) = 6, so the bound L is valid. 

C. It is not apparent how Theorem 1 can be elegantly generalized to ar-

bitrary order sequences. If {w^]} satisfies the recurrence relation 

with suitable initial values, where the Prj- are arbitrary integers, and 
if {u^n^ satisfies the same recurrence relation, but has initial values 
given by 

then it can be proved that 

r-l 

J = 0 \ k = 0 / 

where P = 1. When r = 2, this becomes 
PO 

7,(2) = 7l,(2)-.(2) . -,(2) ?,(2) _ p 

Wl Un r22W0 Wn-1 

which is Eq. (3.14) of [2] for the sequences 

« 2 ) } = {»„(<> , WT> P21' P22>> 
and 

y(2) {u(2) } = {wM(l, P ; P , P )}. 
L rc + l J L n v > 2 1 ' 2 1 2 2 
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Thus, one of the key equations in Theorem 1 generalizes to 

w^ = lww _ V (-l)j~I'~1P . w{r)uir) 

+ y (-Dj~kp . w(r)u{r) \ /u{r) 

^ Z-» V L> ^r,j-kWk Un-j + l) / Un-r + 2> 
k = 0 II 

which is rather cumbersome. 

Thanks are expressed to the referee for several useful suggestions. 
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