A NOTE ON FIBONACCI CUBATURE

ROBERT D. GIRSE
Idaho State University, Pocatello, ID 83209
(Submitted March 1982)

Zaremba [3] considered the two-dimensional cubature formula

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y=\frac{1}{F_{N}} \sum_{k=1}^{F_{N}} f\left(x_{k}, y_{k}\right)
$$

where F_{N} is the N th Fibonacci number and the nodes $\left(x_{k}, y_{k}\right)$ are defined as follows: $x_{k}=k / F_{N}$ and $y_{k}=\left\{F_{N-1} x_{k}\right\}$, where $\}$ denotes the fractional part. Thus, $y_{k}=F_{N-1} x_{k}-\left[F_{N-1} x_{k}\right]$, where [] denotes the greatest integer function. The purpose of this paper is to prove the conjecture stated by Squire in [2]; that is,

Theorem
If $\left(x_{k}, y_{k}\right)$ is a node for $1 \leqslant k \leqslant F_{N}-1$ and if N is ($\left.\begin{array}{l}\text { even } \\ \text { odd }\end{array}\right)$, then

$$
\binom{\left(y_{k}, x_{k}\right)}{\left(y_{k}, 1-x_{k}\right)}
$$

is also a node.

We will assume throughout that $1 \leqslant k \leqslant F_{N}-1, N>2$, and will show:
(i) Each y_{k} is equal to some $x_{m}, 1 \leqslant m \leqslant F_{N}-1$.
(ii) The y_{k}^{\prime} 's are distinct.

By definition, the x_{k} 's are distinct, and so (i) and (ii) imply that for every node $\left(x_{k}, y_{k}\right)$ there is a unique node (x_{m}, y_{m}) with $x_{m}=y_{k}$.

Finally, we show:
(iii) If $\left(x_{m}, y_{m}\right)$ is the node with $x_{m}=y_{k}$, then

$$
y_{m}=\left\{\begin{array}{cl}
x_{k} & \text { if } N \text { is even } \\
1-x_{k} & \text { if } N \text { is odd }
\end{array}\right.
$$

A NOTE ON FIBONACCI CUBATURE

Proof of (i): We have

$$
\begin{align*}
y_{k} & =\left\{F_{N-1} x_{k}\right\}=\left\{k \frac{F_{N-1}}{F_{N}}\right\} \\
& =k \frac{F_{N-1}}{F_{N}}-\left[k \frac{F_{N-1}}{F_{N}}\right] \tag{1}\\
& =\left(k F_{N-1}-F_{N}\left[k \frac{F_{N-1}}{F_{N}}\right]\right) / F_{N} .
\end{align*}
$$

Now from [1, p. 288], gcd $\left(F_{N-1}, F_{N}\right)=1$, and so

$$
0<k \frac{F_{N-1}}{F_{N}}-\left[k \frac{F_{N-1}}{F_{N}}\right]<1 .
$$

Thus

$$
0<k F_{N-1}-F_{N}\left[k \frac{F_{N-1}}{F_{N}}\right]<F_{N},
$$

where the middle quantity in this inequality is an integer and is also the numerator of the right-hand side of (1). Hence, y_{k} is equal to some $x_{m}, 1 \leqslant m \leqslant F_{N}-1$.

Proof of (ii): To show the y_{k} 's are distinct, we will prove $y_{k}=y_{m}$ if and only if $k=m$. Assume, without loss of generality, that $1 \leqslant m \leqslant k$. If $y_{k}=y_{m}$, we have

$$
\begin{align*}
\left\{k \frac{F_{N-1}}{F_{N}}\right\} & =\left\{m \cdot \frac{F_{N-1}}{F_{N}}\right\}, \\
K \frac{F_{N-1}}{F_{N}}-\left[k \frac{F_{N-1}}{F_{N}}\right] & =m \frac{F_{N-1}}{F_{N}}-\left[m \frac{F_{N-1}}{F_{N}}\right], \\
(k-m) \frac{F_{N-1}}{F_{N}} & =\left[k \frac{F_{N-1}}{F_{N}}\right]-\left[m \frac{F_{N-1}}{F_{N}}\right] . \tag{2}
\end{align*}
$$

Now recalling gcd $\left(F_{N-1}, F_{N}\right)=1$ and since $0 \leqslant k-m<F_{N}$, $(k-m) F_{N-1} / F_{N}$ is never an integer unless $k-m=0$. However, the right-hand side of
(2) is always an integer, and so $y_{k}=y_{m}$ if and only if $k=m$.

Proof of (iii): Assume that (x_{m}, y_{m}) is the node with $x_{m}=y_{k}$. Then

$$
y_{m}=\left\{F_{N-1} x_{m}\right\}=\left\{F_{N-1} y_{k}\right\}
$$

A NOTE ON FIBONACCI CUBATURE

$$
\begin{aligned}
& =\left\{F_{N-1}\left(k \frac{F_{N-1}}{F_{N}}-\left[k \frac{F_{N-1}}{F_{N}}\right]\right)\right\} \\
& =\left\{k \frac{F_{N-1}^{2}}{F_{N}}-F_{N-1}\left[k \frac{F_{N-1}}{F_{N}}\right]\right\} .
\end{aligned}
$$

From [1, p. 294], we have $F_{N-1}^{2}=F_{N} F_{N-2}+(-1)^{N-2}$ for $N \geqslant 3$, and so

$$
y_{m}=\left\{k F_{N-2}+(-1)^{N-2} k / F_{N}-F_{N-1}\left[k \frac{F_{N-1}}{F_{N}}\right]\right\} .
$$

Now if n is any integer $\{n+x\}=x-[x]$, and since

$$
k F_{N-2}-F_{N-1}\left[k F_{N-1} / F_{N}\right]
$$

is an integer, we have

$$
\begin{aligned}
y_{m} & =(-1)^{N-2} k / F_{N}-\left[(-1)^{N-2} k / F_{N}\right] \\
& = \begin{cases}k / F_{N}-0=x_{k} & \text { if } N \text { is even, } \\
-k / F_{N}-(-1)=1-x_{k} & \text { if } N \text { is odd. }\end{cases}
\end{aligned}
$$

REFERENCES

1. David M. Burton. Elementary Number Theory. Boston: Allyn and Bacon, 1980.
2. William Squire. "Fibonacci Cubature." The Fibonacci Quarterty 19, no. 4 (1981):313-14.
3. S. K. Zaremba. "Good Lattice Points, Discrepancy, and Numerical Integration." Ann. Mat. Pura. Appl. 73 (1966):293-317.
