$\diamond \diamond \diamond \diamond \stackrel{\rightharpoonup}{*}$
\title{ KRONECKER'S THEOREM AND RATIONAL APPROXIMATION OF ALGEBRAIC NUMBERS }
WAYNE M. LAWTON
Jet Propulsion Laboratory, Pasadena, CA 91109
(Submitted March 1982)

Let the circle T be parametrized by the real numbers modulo the integers. When a real number is used to denote a point in T, it is implied that the fractional part of the number is being considered. If $a, b \varepsilon T$ with $a-b \neq .5$, then (a, b) will denote the shortest open arc in T whose endpoints are a and b.

Fix an irrational number x. For any positive integer n let S_{n} denote the set of n open arcs in T formed by removing the points $x, \ldots, n x$ from T, and let L_{n} be the length of the longest arc in S_{n}. Then, the result of Kronecker in [1, p. 363, Theorem 438] implies that $L_{n} \rightarrow 0$ as $n \rightarrow \infty$. Without further restrictions on x it is not possible to characterize the rate of convergence of L_{n}. However, if x is an algebraic number of degree d (that is, if x satisfies a polynomial equation having degree d and integer coefficients), then the following result gives an upper bound for the rate of convergence of L_{n}.

Theorem 1

If x is an irrational algebraic number of degree d, there exists $c(x)>0$ such that for all $n>3$

$$
\begin{equation*}
L_{n}<c(x) / n^{I /(d-1)} . \tag{1}
\end{equation*}
$$

The proof of this theorem is based on the following three lemmas.

Lemma 1

If x is an irrational algebraic number of degree d, there exists $k(x)>0$ such that, if $(x, p x+x)$ is an arc in S_{n}, then

$$
\begin{equation*}
\text { Length }(x, p x+x)>k(x) / p^{(d-1)} \tag{2}
\end{equation*}
$$

KRONECKER'S THEOREM AND RATIONAL APPROXIMATION OF ALGEBRAIC NUMBERS

Proof: This inequality follows from Liouville's theorem [1, p. 160, Theorem 191].

Lemma 2

If x is irrational and $n>3$, choose $p<q$ such that $(x, p x+x)$ and $(x, q x+x)$ are arcs in S_{n}. Then the set S_{n} can be partitioned into two or three subsets as follows:

$$
\begin{align*}
& A_{p}=\{(k x, p x+k x)\}: 1 \leqslant k \leqslant n-p \tag{3}\\
& A_{q}=\{(k x, q x+k x)\}: 1 \leqslant k \leqslant n-q \tag{4}\\
& A_{p}=\{(n x-q x+k x, n x-p x+k x)\}: 1 \leqslant k \leqslant p+q-n . \tag{5}
\end{align*}
$$

Proof: Let (a, b) be any arc in S_{n} with $a<b$. Then $(a+x, b+x)$ is an arc in S_{n} or $b=n x$ or $(a+x, b+x)$ contains the point x. In the latter case, $a=p x$ and $b=q x$. Hence, letting $a=x, b=p x+x$, and successively translating the arc (a, b) by x yields the $n-p$ arcs in set A_{p}. Similarly, set A_{q} is formed if $\alpha=x$ and $b=q x+x$. Finally, if (a, b) is an arc not contained in A_{p} or A_{q}, then successive translation by x must terminate at the arc $(p x, q x)$. Since there are

$$
n-(n-p)-(n-q)=p+q-n
$$

arcs in S_{n} that are not in A_{p} or in A_{q}, the proof is complete.

Lemma 3
Assume the hypothesis and notation of Lemma 2. Let I_{p} and I_{q} denote the lengths of the arcs in sets A_{p} and A_{q}, respectively. Then the arcs in set A_{r} have length $I_{r}=I_{p}+I_{q}$. Furthermore, the following relations are valid:

$$
\begin{align*}
& p+q \geqslant n \tag{6}\\
& p I_{q}+q I_{p}=1 \tag{7}
\end{align*}
$$

Proof: Clearly $I_{p}=I_{p}+I_{q}$, since

$$
\begin{aligned}
I_{r} & =\text { length }(p x, q x)=\text { length }(p x+x, q x+x) \\
& =\text { length }(p x+x, x)+\text { length }(x, q x+x) \\
& =I_{p}+I_{q} .
\end{aligned}
$$

A1so, since the total number of arcs in A_{p} and A_{q} does not exceed n,

$$
(n-p)+(n-q) \leqslant n
$$

hence, $p+q \geqslant n$, which is inequality (6). Finally, since the sum of the lengths of the arcs in S_{n} is 1 , it follows that

$$
1=(n-p) I_{p}+(n-q) I_{q}+(p+q-n)\left(I_{p}+I_{q}\right)=p I_{q}+q I_{p}
$$

which is equality (7). The proof is finished.

Proof of Theorem 1: Assume x is an irrational algebraic number of degree d and that $k(x)>0$ is chosen as in Lemma 1 so that inequality (2) is valid. Then, for any $n>3$, choose $p<q$ as in Lemma 2. Therefore, combining inequality (2) with equality (7) yields the following inequality:

$$
\begin{equation*}
1>k(x)\left[p / q^{d-1}+q / p^{d-1}\right]>k(x) q / p^{d-1} \tag{8}
\end{equation*}
$$

This combines with inequality (6) to yield

$$
\begin{equation*}
p^{d-1}>k(x) q \geqslant k(x)(n-p) \tag{9}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
p^{d-1}+k(x) p>k(x) n \tag{10}
\end{equation*}
$$

Clearly, there exists a number $g(x)>0$ which depends only on $k(x)$ and d such that for every $n>3$

$$
\begin{equation*}
p>g(x) n^{1 / d-1} \tag{11}
\end{equation*}
$$

Substituting inequality (11) into equation (7) yields

$$
\begin{equation*}
1=p I_{q}+q I_{p}>p\left(I_{q}+I_{p}\right)>g(x) n^{1 /(d-1)} I_{p} \tag{12}
\end{equation*}
$$

Since $L_{n} \leqslant I_{r}$, if $c(x)=1 / g(x)$, then inequality (12) implies inequality (1). This completes the proof of Theorem 1.

If in Lemma $1, d=2$ and x is irrational and satisfies the equation $a x^{2}+b x+c=0$ and $k(x)<\left(b^{2}-4 a c\right)^{-1 / 2}$, then inequality (2) is valid for all except a finite number of values for p.

Clearly, as $n \rightarrow \infty$, both $p \rightarrow \infty$ and $q \rightarrow \infty$; hence, it follows from inequality (10) that inequality (11) is valid for all except a finite number 1983]

KRONECKER'S THEOREM AND RATIONAL APPROXIMATION OF ALGEBRAIC NUMBERS
of values for n if

$$
g(x)=k(x) /(1+k(x))
$$

Hence, the inequality (1) in Theorem 1 is valid for all except a finite number of values for n if

$$
c(x)=1 / g(x)=1+1 / k(x)>1+\left(b^{2}-4 a c\right)^{1 / 2}
$$

The smallest value of the right side of this inequality occurs for $\alpha=1$, $b=-1, c=-1$ in which case $x=(1+\sqrt{5}) / 2$ (the classical "golden ratio"), or $x=(1-\sqrt{5}) / 2$.

Remark
The referee has noted that, for algebraic numbers of degree three or more, the bound in Theorem 1 is not the best possible. If Roth's theorem [2, p. 104] is used in place of Liouvi11e's in Lemma 1, then one obtains a bound of the form

$$
\begin{equation*}
L_{n}<c(\varepsilon) / n^{1-\varepsilon} \tag{13}
\end{equation*}
$$

for any $\varepsilon>0$, where $c(\varepsilon)$ is a constant depending on ε.

ACKNOWLEDGMENT

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

1. G. H. Hardy \& E.M. Wright. An Introduction to the Theory of Numbers. London: Oxford University Press, 1938.
2. J.W.S.Cassels. An Introduction to Diophantine Approximation. London: Cambridge University Press, 1957.
