$\mathbf{\Phi} \diamond \mathbf{\Phi} \diamond \mathbf{\Phi}$

KRONECKER'S THEOREM AND RATIONAL APPROXIMATION OF ALGEBRAIC NUMBERS

WAYNE M. LAWTON

Jet Propulsion Laboratory, Pasadena, CA 91109 (Submitted March 1982)

Let the circle T be parametrized by the real numbers modulo the integers. When a real number is used to denote a point in T, it is implied that the fractional part of the number is being considered. If $a, b \in T$ with $a - b \neq .5$, then (a, b) will denote the shortest open arc in T whose endpoints are a and b.

Fix an irrational number x. For any positive integer n let S_n denote the set of n open arcs in T formed by removing the points x, \ldots, nx from T, and let L_n be the length of the longest arc in S_n . Then, the result of Kronecker in [1, p. 363, Theorem 438] implies that $L_n \neq 0$ as $n \neq \infty$. Without further restrictions on x it is not possible to characterize the rate of convergence of L_n . However, if x is an algebraic number of degree d (that is, if x satisfies a polynomial equation having degree d and integer coefficients), then the following result gives an upper bound for the rate of convergence of L_n .

Theorem 1

If x is an irrational algebraic number of degree d, there exists c(x) > 0 such that for all n > 3

$$L_n < c(x) / n^{1/(d-1)} . (1)$$

The proof of this theorem is based on the following three lemmas.

Lemma 1

If x is an irrational algebraic number of degree d, there exists k(x) > 0 such that, if (x, px + x) is an arc in S_n , then

Length
$$(x, px + x) > k(x)/p^{(d-1)}$$
. (2)

1983]

143

KRONECKER'S THEOREM AND RATIONAL APPROXIMATION OF ALGEBRAIC NUMBERS

<u>Proof</u>: This inequality follows from Liouville's theorem [1, p. 160, Theorem 191].

Lemma 2

If x is irrational and n > 3, choose p < q such that (x, px + x) and (x, qx + x) are arcs in S_n . Then the set S_n can be partitioned into two or three subsets as follows:

$$A_{p} = \{ (kx, px + kx) \}: 1 \le k \le n - p$$
(3)

$$A_q = \{ (kx, qx + kx) \}: 1 \le k \le n - q$$
(4)

$$A_{p} = \{ (nx - qx + kx, nx - px + kx) \} : 1 \le k \le p + q - n.$$
 (5)

<u>Proof</u>: Let (a, b) be any arc in S_n with a < b. Then (a + x, b + x)is an arc in S_n or b = nx or (a + x, b + x) contains the point x. In the latter case, a = px and b = qx. Hence, letting a = x, b = px + x, and successively translating the arc (a, b) by x yields the n - p arcs in set A_p . Similarly, set A_q is formed if a = x and b = qx + x. Finally, if (a, b) is an arc not contained in A_p or A_q , then successive translation by x must terminate at the arc (px, qx). Since there are

$$n - (n - p) - (n - q) = p + q - n$$

arcs in S_n that are not in A_p or in A_q , the proof is complete.

Lemma 3

Assume the hypothesis and notation of Lemma 2. Let I_p and I_q denote the lengths of the arcs in sets A_p and A_q , respectively. Then the arcs in set A_r have length $I_r = I_p + I_q$. Furthermore, the following relations are valid:

$$p + q \ge n; \tag{6}$$

$$pI_q + qI_p = 1. (7)$$

Proof: Clearly $I_p = I_p + I_q$, since

$$I_r = \text{length } (px, qx) = \text{length } (px + x, qx + x)$$
$$= \text{length } (px + x, x) + \text{length } (x, qx + x)$$
$$= I_p + I_q.$$

144

[May

KRONECKER'S THEOREM AND RATIONAL APPROXIMATION OF ALGEBRAIC NUMBERS

Also, since the total number of arcs in A_p and A_q does not exceed n,

$$(n - p) + (n - q) \leq n;$$

hence, $p + q \ge n$, which is inequality (6). Finally, since the sum of the lengths of the arcs in S_n is 1, it follows that

 $1 = (n - p)I_p + (n - q)I_q + (p + q - n)(I_p + I_q) = pI_q + qI_p,$

which is equality (7). The proof is finished.

<u>Proof of Theorem 1</u>: Assume x is an irrational algebraic number of degree d and that k(x) > 0 is chosen as in Lemma 1 so that inequality (2) is valid. Then, for any n > 3, choose p < q as in Lemma 2. Therefore, combining inequality (2) with equality (7) yields the following inequality:

$$1 > k(x) \left[p/q^{d-1} + q/p^{d-1} \right] > k(x)q/p^{d-1}.$$
(8)

This combines with inequality (6) to yield

$$p^{d-1} > k(x)q \ge k(x)(n-p).$$
 (9)

Therefore,

$$p^{d-1} + k(x)p > k(x)n.$$
 (10)

Clearly, there exists a number g(x) > 0 which depends only on k(x) and d such that for every n > 3

$$p > q(x)n^{1/d-1}$$
 (11)

Substituting inequality (11) into equation (7) yields

$$1 = pI_q + qI_p > p(I_q + I_p) > g(x)n^{1/(d-1)}I_p.$$
(12)

Since $L_n \leq I_r$, if c(x) = 1/g(x), then inequality (12) implies inequality (1). This completes the proof of Theorem 1.

If in Lemma 1, d = 2 and x is irrational and satisfies the equation $ax^2 + bx + c = 0$ and $k(x) < (b^2 - 4ac)^{-1/2}$, then inequality (2) is valid for all except a finite number of values for p.

Clearly, as $n \to \infty$, both $p \to \infty$ and $q \to \infty$; hence, it follows from inequality (10) that inequality (11) is valid for all except a finite number 1983] 145 of values for n if

$$q(x) = k(x)/(1 + k(x)).$$

Hence, the inequality (1) in Theorem 1 is valid for all except a finite number of values for n if

$$c(x) = 1/q(x) = 1 + 1/k(x) > 1 + (b^2 - 4ac)^{1/2}$$
.

The smallest value of the right side of this inequality occurs for a = 1, b = -1, c = -1 in which case $x = (1 + \sqrt{5})/2$ (the classical "golden ratio"), or $x = (1 - \sqrt{5})/2$.

Remark

The referee has noted that, for algebraic numbers of degree three or more, the bound in Theorem 1 is not the best possible. If Roth's theorem [2, p. 104] is used in place of Liouville's in Lemma 1, then one obtains a bound of the form

$$L_n < c(\varepsilon)/n^{1-\varepsilon} \tag{13}$$

for any $\varepsilon > 0$, where $c(\varepsilon)$ is a constant depending on ε .

ACKNOWLEDGMENT

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

- 1. G.H. Hardy & E.M. Wright. An Introduction to the Theory of Numbers. London: Oxford University Press, 1938.
- 2. J.W.S.Cassels. An Introduction to Diophantine Approximation. London: Cambridge University Press, 1957.

[May