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Send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
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HAVEN, PA 17745. This department especially welcomes problems believed to 
be new or extending old results. Proposers should submit solutions or any 
other information that will assist the editor. To facilitate their consid-
eration , solutions should be submitted on separate signed sheets within two 
months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-356 Proposed by David Singmaster, Polytechnic of the South Bank, 
London, England 

Consider a set of r types of letter with rti occurrences of letter i . 
How many words can we form, using some or all of these letters? 

( Ilk- \ 

v
 v

 v \ ways 
to form a word, and the desired number is 2 (7, % y )• When r = 2, 

fc;< rii V^l» • • • » ' W 

this can be readily evaluated using properties of Pascal's triangle and we 

( yi + > 7 + 9 \ 

1 2, , 1 - 1 . W. 0. J. Moser has found a nice combinatorial deri-n± + 1 / 
vation of this result, but neither approach works for r > 2. 

Moserfs solution for r = 2 is as follows: In the case r = 2, 

0 < 3 < n 

is the number of ways of forming words with some of m Afs and n B's. Any 
such word with £ A's and J B's can be extended to a word of m + 1 Afs and 
n + 1 B's by appending m + 1 - i A's and n + 1 - j B's to it. If our orig-
inal word begins with an A, we append a block of m + 1 - i Afs followed by 
a block of w + 1 - j B's at the beginning* If the original word begins 
with a B, we append the block of Bfs followed by the block of A?s at the 
beginning,, The empty word can be extended in two ways: AA •... ABB*.. A or 
BB.., BAA •.. A. Otherwise^ we have a one-to one correspondence between our 
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original words and words formed from all of m + 1 Afs and n + 1 B's. The 
reverse correspondence is to take any word of m + 1 A's and n + 1 Bfs and 
delete its first two blocks (i.e. , constant subintervals). Since the empty 

word arises from two extended words, we have (m U t J - 1 of our oriei-
nfl1 ™ ^ e \ HI + 1 / 5 nal words 

As an illustration, let m = n 
Original Word Extended Word 

_ 
A 
B 
AB 

AABB or BBAA 
ABBA 
BAAB 
ABAB 

H-357 Proposed by Clark Kimberling, Univ. of Evansville, Evansville, IN 

For any positive integer N9 arrange the fractional parts of the first 
N integral multiples of a = (14- /5)/2 in increasing order: 

{&1a} < {k2a} < ••• < {kNa}. 

Is kn + kN+1_n a sum of two Fibonacci numbers for n - 1, 29 35 ..., Nl 

I have not been able to prove that kn + kN+1_n is always a sum of two 
Fibonacci numbers. However, a computer has verified that it is so for N = 
15 29 .e e s 666. 

The following table may be helpful: 

N a/1/ {a/1/} kl9 k2S « » , 9 kN k1 + kN$ k2 + kN_2, ««.. s kN + k1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1.618 
3»236 
4.854 
6.472 
8.090 
9.708 
11.326 
12.944 
13.562 

.618 

.236 

.854 

.472 

.090 

.708 

.326 

.944 

.562 

1 
2 1 
2 1 3 
2 4 1 3 
5 2 4 13 
5 2 4 16 
5 2 7 4 1 
5 2 7 4 1 
5 2 7 4 9 

3 
6 
6 
1 

3 
3 
6 
8 
3 8 

2 
3 3 
5 2 5 
5 5 5 5 
8 3 8 3 8 
8 8 5 5 8 8 
8 8 8 8 8 8 8 
13 5 13 5 5 13 5 13 
13 5 13 5 18 5 13 5 13 

As you see, all numbers in the fifth column are sums of two Fibonacci num-
bers. For N = 6629 for example, there are six (and only six) different 
numbers kn + kN+1_n as n ranges from 1 to 662; they are: 

144 = 8 9 + 5 5 
377 = 233 + 144 
521 = 377 + 144 
754 - 377 + 377 
987 = 610 + 377 
1131 = 987 + 144 
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H-358 Proposed by Andreas N. Philippou, Univ. of Patras, Patras, Greece 

For any fixed integers k ^ 1 and r ^ 1, set 

f(t\ = E ("x + '" +n*+r ~ \ ) , n>0, 
«i» • • •, " k

 x 

where the summation is over all nonnegative integers n,, »»«3 nk satisfy-
ing the relation n1 + 2n2 + * e °  4- fenk = n. Show that 

00 

V (f C) /2») = 2rk. 
n-0 n + 1 ' r 

You may note that the present problem reduces to H-322(c) for r - 1 (and 
k ^ 2) 3 because of Theorem 2,1 of Philippou and Muwafi [1]. In addition, 
the present problem includes as special cases [for k = 1, r - 1, and k = 1, 
p(^l)] the following infinite sums; namely, 

E(l/2») = 2 and £ |"(" + *" " 1)/2"' 
n 

Reference 

2r. 

1. A.N. Philippou & A. A. Muwafi. "Waiting for the fcth Consecutive Success 
and the Fibonacci Sequence of Order Z." The Fibonacci Quarterly 20, no. 
1 (1982):28~32. 

H"359 Proposed by Paul S. Bruckman, Carmichael, CA 

Define the "Zetanacci" numbers Z (n) as follows: 

Z{n) = I I P„ + 1 , n = 1 , 2 , 3 , . . . [ w i t h Z ( l ) = 1 ] . (1) 
Pelln 

For example, Z(n) = 1, n = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, ...; 
Z{n) = 2 , n = 4, 9, 12, 18, 20, ...; Z(8) = 3, Z(16) = 55 Z(135,G00) = 
Z(23335^) = 45, etc. 

(A) Show that the (Dirichlet) generating function of the Zetanacci numbers 
is given by: 

f, Z{n)n-S = n (1 - Vs - p-28)'1, (2) 
n = 1 P 

the product taken over all primes. 
(B) Show that 

II (1 - p"s - P~2S) = E u(P(w)) • |y(n/P(n))| • n'8 , 
P n-l 

where y is the Mobius function and 

P(w) = f I P [with P(l) = 1]. 
p\n 
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SOLUTIONS 

Rat iona1 Thirds 

H-339 Proposed by Charles R. Wall, Trident Technical College, 
Charleston, CA (Vol. 20, No. 2, May 1982) 

A dyadic rational is a proper fraction whose denominator is a power of 
2* Prove that 1/4 and 3/4 are the only dyadic rationals in the classical 
Cantor ternary set of numbers representable in base three using only 0 and 
2 as digits. 

Solution by the proposer 

Clearly 1/2= .1 (base three) is not in the sets but 1/4 = .02 and 3/4 = 
.20 are. The other cases require a lemma: 

If k > 3 and 0 < a < 2k~2
s the numbers ±3a are distinct modulo 2k. 

This assertion is true for k = 3 by observations 3°  = 1, -3°  E 79 31 = 3, 
and -31 E 5 (all mod 8). Thus, we may assume k ^ 4. That the numbers 3a 

are distinct (mod 2k) rests on the congruence 

32*"3 = 1 + 2*"1 (mod 2k), 

which is easily proved by induction for k > A, and its corollary 

32*"2 = 1 (mod 2*). 

To show that the numbers 3a are distinct from their negatives, note that 
3* E (-1)* (mod 4). If k > 4 and 0 < b < a < 2k~2 and 3a ~ ~-3b (mod 2k) , 
then 3a~b E -1 (mod 2k) , so a - b Is odd. Then 32(a~b) = 1 (mod 2k) , so 
2 divides 2(a~b)3 and thus 2k~3 divides the odd number a - b5 which is 
Impossible if k 4. 

Let f(t) be the fractional part of t: f(t)~t~ [t] 9 where the brackets 
denote the greatest Integer function. For k^ 3S by the lemma5 each dyadic 
rational with denominator 2k can be written uniquely as /(±3a/2^)5 0 < a < 
2k"2. If a fraction x = /(±3a/2^) is In the Cantor set, so" (by shifting 
the ternary point) is f(3x) = f(±3a + 1 /2k), and so is the 2fs complement 
1 - x = f(+3a/2k). Thus5 if any dyadic rational x = f(±3a/2k) Is in the 
set., all such fractions with the same denominator are. However, the two 
fractions closest to 1/2 are forbidden, so all are. 

Also solved by P. Bruckman. 

Making a Difference 

H-3̂ 0 Proposed by Verner E. Hoggatt, Jr. (deceased) 
(Vol. 20, No. 2, May 1982) 

Let A2 = Bs Ah = C, and A2n+li = A2n - A2n+2 (n = 1, 2., 33 .. .) . Show: 

a. A2n = (~l)n + 1(Fn_2B - Fn„1C) 

bo If A2n > 0 for a l l n > 05 then B/C = (1 + v/5)/2 
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c, A2n = Cn-YlBn^ 

Solution by Paul Bruckman, Carmichael, CA 

For all n > 1, let 
Gn = A 2 n . (1) 

The given recursion is then transformed to the following recursion: 
Gn + 2 + Gn + 1 * Gn = 0> n = 1, 2, 3, ..., (2) 

with initial conditions 
G1 = £, G2 = C. (3) 

The characteristic polynomial p (z) of (2) is given by 

pGO = £2 + s - 1 = (s + a) (2 + B), (4) 

where a and 3 are the usual Fibonacci constants. Hence, there exist con-
stants p and q such that, for all n, 

Gn = p(-a)n + q(-g)n. (5) 

We find p and q by setting n = 1 and n = 2 in (5) and using (3) . After 
simplificationj we find the following expression (which is readily verifi-
able) : 

Gn = (-Dn + 1(Fn_2B - Fn_1C), n = 1, 25 3, ... . (6) 

Note that the expression in (6) is of the same form as given in (5) , and 
moreover satisfies (3). Hence, A2n is given by (6). 

Thus, 
G2n = F2n-1G ~F2n-2B *OT n > 1 

and 
G2n + i = Fm-iB - F2nC f o r n > 0 . 

S i n c e Gn > 0 f o r a l l rc > 0 , we have B > C > 0 and 
^2n/^2n-l < B ̂  < ^2n-l/^2n-2. n = 2, 3, 4, ... . (7) 

Taking limits in (7) as n -> °°, each extreme expression approaches a, which 
implies J5/C = a. Q.E.D. 

Also solved by if. Freitag, C. Georghiou, W. Janous, G. Lord, A. Shannon, 
and the proposer. 

Late Acknowledgment: G. Wulczyn solved H-332. 
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