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1. INTRODUCTION 

While searching for a class of graphs with certain desired properties to 
be used as computer networks, we have found graphs that come close to being 
optimal. One of the desired properties is that the design be simple and re-
cursives so that when a new node is added5 the entire network does not have to 
be reconfigured. Another property is that one central vertex be adjacent to 
all others. The third requirement is that there exist several paths between 
each pair of vertices (for reliability) and that some of these paths be of 
short lengths (to reduce communication delays). Finally, the graphs should 
have good cohesion and connectivity [1 ] . Complete graphs Kn satisfy all these 
properties, but are ruled out because of the expense. 

This paper introduces a set of adjacency matrices called Pascal matrices, 
which are constructed using PascalTs triangle modulo 2. We also define Pascal 
graphs, the set of graphs corresponding to the Pascal matrices. We begin by 
showing that the Pascal graphs have the properties described above. In the 
second part of the paper we explore the properties of the determinants of the 
Pascal matrices. It appears that every Pascal matrix of order > 3 has a de-
terminant of either 0 or 2. We indicate the sequence of matrix orders for 
which the determinant is 2. The third part of our report lists unexplored 
ideas and presents attributes of Pascal graphs which we have not been able to 
exploit in our proofs. 

Standard graph theoretic terms are used throughout this paper. The reader 
seeking a reference should consult Deo [3] or Harary [6]. 

2. DEFINITIONS 

Def in i t ion 1 

An n x n symmetric binary matrix is called the Pascal matrix PM(n) of order 
n if its main diagonal entries are all 0fs and its lower triangle (and there-
fore the upper also) consists of the first n - 1 rows of the Pascal triangle 
modulo 2. Let prn-cj denote the element in the ith row and the jth column of 
the Pascal matrix. 

*This work was supported by NSF grant MCS 78-25851 and by U.S. D.O.T. con-
tract DTRS-5681-C-00033. 
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(This definition should not be confused with another definition of Pascal 
matrix by Lunnon [8]. Note, however, that the matrix he defines as the Pascal 
matrix has been defined previously as Tartaglia1s rectangle [9].) 

Definition 2 

An undirected graph with n vertices corresponding to PM(n) as its adjacen-
cy matrix is called the Pascal graph PG(n) of order n. 

The first seven Pascal graphs along with associated Pascal matrices are 
shown in Figure 1. 

Definition 3 

Let ptt,j- refer to the jth element of the ith row of PascalTs triangle, 
where rows and their elements are numbered beginning with 0. 

1 2 

PC(1) 2W(1) [0] 

PC(2) PM(2) e a 
Pff(3) EW(3) 

PC (4) BW(4) 

PA/(6) 

PGO) PM(7) 

0 1 
1 0 
1 1 

0 1 
1 0 
1 1 
1 0 

0 1 
1 0 
1 1 
1 0 
1 1 

1 1 
0 1 
1 1 
0 1 
1 0 

FIGURE 1 
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3. CONNECTIVITY PROPERTIES OF THE PASCAL GRAPHS 

Lemma 1 

PG(n) is a subgraph of PG(n + 1) for all n > 1. 

Proof: This property is a direct consequence of the definition of the 
Pascal matrix 

Theorem 1 

All PG(i) for 1 < £ < 7 are planar; all Pascal graphs of higher order are 
nonplanar. 

Proof: Figure 1 clearly indicates that all PG(i) for 1 < i < 7 are pla-
nar. Z3j 3 is a subgraph of PG(8). Thus, by Lemma 1, all graphs of order 8 
and higher are nonplanar. 

Theorem 2 

Vertex v1 is adjacent to all other vertices in the Pascal graph. Vertex 
Vi is adjacent to Vi+1 in the Pascal graph for i ^ 1* 

Proof: Vmi,Q = P^-2, o -l (m°d 2) 5 -£ > j > 1 (Definition of Pascal matrix), 

For all i > 29 ptf7ifl = P^_2} 0 (mod 2) = r " 2J (mod 2) = 1. 

Thus3 2^ is adjacent to all vi 5 -£ > 2. 

For all i > 1, pmf + 1>f = p*f_i.i-i (mod 2) = (̂  " j) (mod 2) = 1. 

Thus9 v^ is adjacent to V^+i for all i ^ 1. 

Corollary 1 

PG(n) contains a startree for all n ̂  1. 

Corollary 2 

PG(n) contains a Hamiltonian circuit [19 2, . .., n - 15 ns 1]. 

Corollary 3 

PG(n) contains Wn - x (wheel of order n minus an edge). 

L emma 2 

If k = 2n + 15 n a positive integer, then vk is adjacent to all v^9 1 < i 
< 2k and i + k. 

Proof: Let k = 2n + 1, where n is a positive integer. 



PASCAL GRAPHS AND THEIR PROPERTIES 

Case 1. 1 < i < k 

V™Ki - P**-2.i-i (mod 2) = ^ i - l ) ( m ° d 2) = l [4]' 

Case 2. k < i < 2k 

Pmk,i = Pmi,k =Pti-2,k-i (mod 2> = \ 2" ) ( m ° d 2)> 

We may factor i - 2 into its binomial coefficients: 

i - 2 = mQ + m1 x 21 + •- - + mn_1 x 2n~1 + I x 2n. 

Thus, 

(V-2) <«*> 2) - ft)^) •- (V)(i) Cod 2) . 1 [«,. 

Since for all z;̂  , 1 < i < 2k and £ ̂  k9 pmk i = l9 Vk is adjacent to all such 

The following connectivity property is useful in the design of reliable 
communication and computer networks. 

Theorem 3 

There are at least two edge-disjoint paths of length < 2 between any two 
distinct vertices in PG{ri)9 n ^ 3. 

Proof: Let vi9 Vj be two vertices of PG(ri)9 n > 3, i < j . 

Case 1. i = 1, j = 2 

Two edge-disjoint paths are [v19 V2] and [v19 V3, V2] . 

Case 2. i = 1, j > 2 

Two edge-disjoint paths are [v2 9 v^] and [v19 Vi_19 Vi] (Lemma 2). 

Case 3- i > 1 

By Theorem 2 , we know t h a t one p a t h i s [v^ 9 i ? 1 5 i?j ] . L e t 

k = i + 2Lio8a<j)j _ 

Lemma 2 indicates that Vk is adjacent to all vm where 1 < m < 2k and m £ k. 
If £ = & or j = k9 then a second path is [v^9 Vj]; otherwise, a second path is 
[Vi9 Vk9 Vj]. 

Corollary h 

All Pascal graphs of order > 3 are 2-connected. 
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Lemma 3 

No two even-numbered vertices of a Pascal graph are adjacent. 

Proof: Let i9 j be even integers, i > j . 

Pmi,j = P^-2, j-i (mod 2) = (} I i) (mod 2). 

Since i - 2 is even and j - 1 is odd, (\ ~~ 2 J (mod 2) = 0 [4]. 

Theorem 4 

If Vi is adjacent to Vj 9 where j is even and \i - jl > 1, then i is odd 
and r>i is adjacent to V1-_1. 

jl > 1. By 

(Definition of Pascal triangle) 

(Definition of Pascal triangle) 

Proof: Assume Vi is adjacent to Vj , where j is even and 
Lemma 3, we know that i is odd. 

Case 1. i > j 

1 = Pmi,j " P^i-i, i + P^-isj-i (mod 2) 

= 0 + Vmi-\yo-\ (Lemma 3) 

= Pmi-i,j-i> 

Thus , 

P^i.j-i =P^-i,j-i +P^i-i,j-2 (mod 2> 

= pmi_1 {J-_1 + 0 (Lemma 3) 

= 1 (Above). 

Case 2. i < j 

The proof proceeds similarly to Case 1. Thus, since pm^ 7-_1v= 1» vi is adja-
cent to Vj_±. 

Although the set of complete graphs Kn has maximal connectivity and cohe-
sion properties, the fact that the number of edges in Kn increases at a rate 
of n2 makes it too costly to consider . The following theorem shows that the 
number of edges in the Pascal graphs increases at a much lower rate. 

Theorem 5 

Define e(PG(n)) to be the number of edges in PG(n). Then 

e(PG(n)) < [(n - l)log2^| . 
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Proof by induction: 

Basis 

e{PG{\)) 

e{PG{2)) 

e(PG(3)) 

Induction 

Assume true for all PG(n), 1 < n < 2k + 1, k > 0. 

Prove true for PG(n), 2k + 2 < n < 2k+1 + 1. 

Let r be the positive integer such that n - 1 = 2k + r. 

e(PG(n)) = e(PG(2k + 1)) + 2e(PG(r + 1)) [7] 

< [_(2k)log23_] + 2[rlog23_\ (Induction Hypothesis) 

< [_(2k + p)log23J = L(w ~ l) l o g 2 3J . 

Pascal graphs are not the graphs with the fewest possible edges satisfying 
the preceding structural properties (which are useful in designing practical 
networks). For example, in PG{1) , the edge from v2 to v7 is redundant. There 
is a possibility that for some set of connectivity requirements, the Pascal 
graphs may exhibit optimal connectivity; i.e., they have no redundant edges. 
We have not found such a set of requirements, however. 

k. DETERMINANTS OF THE PASCAL MATRICES 

Theorem 6 

Let det(PM(n)) refer to the determinant of the Pascal matrix of order n. 
Then det(PM(n)) = 0 for all even n > 4. 

Proof: Given PM(n) satisfying the conditions on n, we show that the even-
numbered rows of PM{n) are linearly dependent. 

No two even-numbered vertices of a Pascal graph are adjacent (Lemma 3). 
Since even-numbered vertices are only adjacent to odd-numbered vertices, and 
since we desire to show that the even-numbered rows are linearly dependent, we 
may create a reduced Pascal matrix by removing the odd-numbered rows and even-
numbered columns from PM(ji) (see Figure 2) . 

To show that the even-numbered rows are linearly dependent, it is suffi-
cient to show that the determinant of the reduced Pascal matrix is 0. The 
reduced Pascal matrix contains two columns of l*s. Vertex V\ is adjacent to 

= o < i = Lplog23J • 

= i < i = L i l o g 2 3 j . 

= 3 < 3 = L2loS2U • 
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all the other vertices (Theorem 2). Let k = 2Ll° 82(n"1)J + 1. Vertex vk of 
PG(n) is adjacent to all other vi3 1 < i < k or k + 1 < i < 2k (see Lemma 2). 
Thus, columns 1 and (|_fc/2| + 1) of the reduced Pascal matrix consist only of 
l?s. 

Since the reduced Pascal matrix contains two identical columns, its deter-
minant is 0. Thus det(PM(n)) = 0. 
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FIGURE 2 . THE REDUCED PASCAL MATRIX 

Theorem 7 

Det(PA/(n)) is even for all odd n > 3* 

Proof: Let n be an odd integer > 3; Gi be one of the m linear subgraphs 
of PG(n); ei be the number of components of Gi which have an even number of 
vertices; and c^ be the number of cycles in G^» 

1983] 
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Since there are an odd number of vertices, each linear subgraph of PG(n) must 
contain at least one cycle. Thus, det(PAf(n)) is a sum of even integers, and 
therefore det(PM(n)) is even. 

Observations 

Det(PM(n)) = 
'2, for n = 3, 7, 11, 23, 43, 87 

,0, for all other n, 4 < n < 86. 

Let t0, t19 t2, ... be the sequence of integers such that det(PM(ti)) 
Then the sequence of ti1s is conjectured to be: 

= 2. 

ti = 2^ + ti_1, i > 2. 

Det(PAf(t̂  + 1)) = 0 for all £, since t± + 1 is even. This implies that 
row ti + 1 is linearly dependent upon other even-numbered rows in the Pascal 
matrix (Theorem 6) . It appears that the first of these rows whose linear com-
bination yields row ti + 1 is row t̂ -i ~ !• This linear combination of rows 
must always break down at column 2i + 1 + t^_15 since this column has a 1 in row 
t{,„1 - 1 and 0Ts in rows t£_i 4- 1 through ti + 1. Note that it is precisely 
at this point, when the linear dependence must break down, that the Pascal 
matrix again has determinant 2. Figure 3 illustrates this phenomenon. 

4^ 

+ 

Vi - l-

ti^ 
U + i-

0 1 1 
1 0 1 
1 1 0 
1 0 1 
1 1 1 
-10 0 
1 1 0 
1 0 1 
1 1 1 
1 0 0 
- 1 1 0 
-10 1 

1 1 
0 1 
1 1 
0 1 
1 0 
0 1 
0 1 
0 1 
1 1 
0 0 
0 0 
0 0 

1 1 
0 1 
0 0 
0 0 
1 1 
0 1 
1 0 
0 1 
1 1 
0 0 
0 0 
0 0 

1 1 1 
0 1 0 
1 1 0 
0 1 0 
1 1 0 
0 1 0 
1 1 0 
0 1 0 
1 0 1 
0 1 0 
0 1 1 
0 1 0 

1 1 1 1 1 
1 0 1 0 1 
0 1 1 0 0 
0 0 10 0 
0 0 0 11 
0 0 0 0 1 
0 0 0 0 0 
0 0 0 0 0 
1 1 1 1 1 
1 0 10 1 
0 1 1 0 0 
1 0 1 0 0 

il! CNi 
1 1 

1 1 1 1 1 1 1 1 
0 1 0 1 0 1 0 1 
1 1 0 0 1 1 0 0 
0 1 0 0 0 1 0 0 
1 1 0 0 0 0 11 
0 1 0 0 0 0 0 
1 1 0 0 0 0 0 
0 1 0 0 0 0 0 
1 1 0 0 0 0 0 
0 1 0 0 0 0 0 
1 1 0 0 0 0 0 
0 1 0 0 0 0 0 

Tj 
0 
0 
0 
0 
0 
_0J 

FIGURE 3 

Thus discussion leaves several questions unanswered. We just described 
why the linear combination of rows breaks down when it does. Why does it fail 
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to break down sooner? When it does break down, why is there not another com-
bination of linearly dependent rows? Why is the determinant of PM(ti), i > 0, 
equal to 2? 

There is a pattern to the rows that are linearly dependent on each other, 
causing the determinants of the matrices to be 0. Relationships among these 
rows are illustrated in Figure 4. 

This combination of rows.., yields row... for Pascal matrices of size. 

2 4 4-6 
2 8 8-10 

-6 +8 +10 12 12-22 
-10 +16 +18 24 24-42 

22 -24 -26 +28 -38 +40 +42 44 44-86 

For example, row 8 plus row 10 minus row 6 equals 
row 12 in all Pascal matrices of sizes 12 through 22. 
Thus, since row 12 is linearly dependent upon other 
rows, the determinant of each Pascal matrix of order 
12 through 22 is zero. 

Note that 6 = 4 + 2 , 10 = 8 + 2, 22 = 12 + 10, 
42 = 24 + 18, and 86 = 44 + 42. 

Arranging the rows that are linearly dependent on 
each other in increasing order: 

+2 -4 
+2 -8 

-6 +8 +10 -12 
-10 +16 +18 -24 

+22 -24 -26 +28 -38 +40 +42 -44 

Looking at the differences between the rows: 

2 
6 

2 2 2 
6 2 6 

2 2 2 10 2 2 2 

FIGURE 4 

5. UNEXPLORED IDEAS AND UNUSED DATA 

A necessary and sufficient condition for a matrix to have a zero determin-
ant is that it have at least one eigenvalue that is zero. Unfortunately, de-
ciding whether or not a matrix has a zero eigenvalue is no easier than deciding 
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if it has a zero determinant. The only method not requiring direct calcula-
tion of the determinant involves finding linear subgraphs [5]. 

Figure 5 summarizes what we have discovered about the number of linear 
subgraphs of various types for the first few Pascal graphs. The number of 
linear subgraphs of PG(n) grows very rapidly as n increases, limiting our pur-
suit of additional data. We have not yet discovered a pattern in these data 
that would point to a proof showing those Pascal matrices that have 0 deter-
minants and those that have determinant 2. 

PG(3): 1 linear subgraph 

Shape / \ 

Number 1 

PG(4): 3 linear subgraphs 

Shape | | Q 

Number 2 1 

Shape 

Number 

PG(5): 12 linear subgraphs 

/A O 
PG(6): 10 linear subgraphs 

Number 4 4 0 2 

PG(7) i 53 linear subgraphs 

Shape 

Number 15 20 4 14 
'<] <G ^ > Q 

Shape 

PG(8): 100 linear subgraphs 

< > ^ ^ v 0 o 0 O 
29 0 32 0 5 20 

Number 14 29 0 32 0 

FIGURE 5 
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A topic that we have not explored is the eigenvalue spectra of the Pascal 
matrices. Since the matrices are symmetric, their eigenvalues are real. Per-
haps a pattern in these spectra could be found. Several facts concerning the 
eigenvalue spectra may be useful. Let A i be one of the n eigenvalues of 
PM(n); dn be the mean valence of the vertices in PM(n); rn be the greatest 
eigenvalue of PM(n). Then the number of edges in PG(n) is 

E A2/2; 
i = 1 

the number of triangles in PG(n) is 

£ A3/2; 
i = l 

and dn < rn < n - 1 [2]. 

Table 1 lists the number of edges in the Pascal graphs of small order and 
Table 2 shows the vertex valency spectra of Pascal graphs of small order. 

n 

1 
2 
3 
4 
5 
6 
7 

Edges 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

i n 

0 
1 
3 
5 
9 

11 
15 

PS(n) 

Valency 

1 
2 
2 
3 
2 
3 
3 
4 
2 
3 
3 
4 
4 
5 
5 
6 
2 
3 
3 

1 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
5 
5 
6 
6 
4 
4 

2 
3 
4 
3 
4 
4 
5 
4 
4 
4 
5 
4 
5 
5 
6 
6 
6 
5 

Spe 

3 
4 
4 
4 
4 
5 
5 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 

n 

8 
9 

10 
11 
12 
13 
14 

ctrum 

4 
5 5 
4 6 
5 5 
6 6 
5 6 
5 6 
5 5 
5 6 
5 5 
5 5 
5 5 
6 6 
6 6 
6 6 
6 6 

f o r 

6 
7 
8 
6 
6 
6 
6 
6 
6 
7 
8 
6 
6 
6 

TABLE 

Edges 

TABLE 

PG( 

1 
8 
8 
6 
6 
7 
6 
6 
7 
8 
8 
6 
6 

n) 

8 
9 
a 
7 
8 
7 
8 
8 
9 
8 
8 
6 

1 

i n 

19 
27 
29 
33 
37 
45 
49 

: 2 

9 
10 

8 
8 
8 
8 
8 
9 
9 
8 
8 

PG(n) 

10 
n 
8 
9 
8 
9 

10 
9 
9 
8 

11 
12 

9 
10 

9 
10 
10 
10 
9 

12 
13 
10 
11 
12 
10 
10 
10 

n 

15 
16 
17 
18 
19 
20 

13 
14 14 
11 15 
12 16 
12 12 
10 12 
10 11 

Ed 

15 
16 
16 
12 
12 

ges 

16 
17 
16 
12 

in PG(n) 
57 
65 
81 
83 
87 
91 

17 
18 18 
16 19 19 
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