$\diamond \diamond \diamond \diamond$

EQUIPROBABILITY IN THE FIBONACCI SEQUENCE
LEE ERLEBACH
Michigan Technological University, Houghton, MI 49931
and
WILLIAM YSLAS VÉLEZ
University of Arizona, Tuscon, AZ 85721

(Submitted April 1981)

For any positive integer m, the Fibonacci sequence is clearly periodic modulo m. Many moduli m, characterized in [1], have the property that every residue modulo m occurs in each period. (Indeed, 8 and 11 are the smallest moduli which do not have this property.) However, moduli m with the property that all m residues modulo m appear in one period the same number of times occur very infrequently, as the following theorem from [2] shows.

Theorem 1

If all m residues appear in one period of the Fibonacci sequence modulo m the same number of times, then m is a power of 5 .

The converse of this theorem is also true [3]. Since (see [4]) for $k>0$ the Fibonacci sequence modulo 5^{k} has period $4 \cdot 5^{k}$, it follows that if $m>1$ is a power of 5, and $\left(u_{n}\right)$ is the Fibonacci sequence, then every residue modulo m appears exactly four times in each sequence

$$
u_{s}, u_{s+1}, u_{s+2}, \ldots, u_{s+4 m-1}
$$

This result can be strengthened considerably.

Theorem 2

Denote the Fibonacci sequence by $\left(u_{n}\right)$. If $m>1$ is a power of 5 , then every residue modulo m appears exactly once in each sequence

$$
u_{s}, u_{s+4}, u_{s+8}, \ldots, u_{s+4(m-1)}
$$

Proof: Write $m=5^{k}$, and denote the greatest integer function by []. The Fibonacci sequence $u_{1}=1, u_{2}=1, u_{3}=2, \ldots$ satisfies the well-known formula

$$
u_{n}=\left(\left((1+\sqrt{5}) 2^{-1}\right)^{n}-\left((1-\sqrt{5}) 2^{-1}\right)^{n}\right) / \sqrt{5}
$$

Apply the binomial expansion to this formula to obtain

$$
u_{n}=\left(2^{-1}\right)^{n-1}\left(\binom{n}{1}+\binom{n}{3} 5+\binom{n}{5} 5^{2}+\cdots\right),
$$

where all terms after $\binom{n}{2 \ell+1} 5^{\ell}$ vanish and $\ell=[(n-1) / 2]$. Fix s, and let
$S_{k}=\left\{0,1, \ldots, 5^{k}-1\right\}$. Then, for $n=s+4 a, a \varepsilon S_{k}$, we have

$$
u_{n}=\left(2^{-1}\right)^{s-1}\left(2^{-1}\right)^{4 a}\left(\binom{n}{1}+\binom{n}{3} 5+\cdots\right)
$$

and it is obvious that u_{n} represents every residue modulo 5^{k} if and only if

$$
t_{n}=\left(2^{-1}\right)^{4 a}\left(\binom{n}{1}+\binom{n}{3} 5+\cdots\right)
$$

represents every residue modulo 5^{k}, since s is fixed and $\left(2^{-1}\right)^{s-1}$ is a unit modulo 5^{k}. Thus, we shall only consider t_{n} and prove the theorem by induction on k.

If $k=1$, then $a \varepsilon\{0,1,2,3,4\}$ and $t_{n} \equiv s+4 a(\bmod 5)$, since $2^{-4} \equiv 1$ (mod 5). Thus, the theorem is true for $k=1$. Assume the theorem is true for k, and consider $k+1$. For $a \varepsilon S_{k+1}$, write $a=b+c 5^{k}$, where $b \varepsilon S_{k}$ and $c \varepsilon$ $\{0,1,2,3,4\}$. Then,

$$
\begin{aligned}
t_{n} & =\left(2^{-1}\right)^{4 b}\left(2^{-1}\right)^{4 c 5^{k}}\left(\binom{s+4 b+4 c 5^{k}}{1}+\binom{s+4 b+4 c 5^{k}}{3} 5+\cdots\right) \\
& \equiv\left(2^{-1}\right)^{4 b}\left(\binom{s+4 b}{1}+\binom{s+4 b}{3} 5+\cdots\right)+\left(2^{-1}\right)^{4 b} 4 c 5^{k}\left(\bmod 5^{k+1}\right),
\end{aligned}
$$

since

$$
\left(2^{-1}\right)^{4 \cdot 5^{k}} \equiv 1\left(\bmod 5^{k+1}\right)
$$

and

$$
\binom{s+4 b+4 c 5^{k}}{2 j+1} 5^{j} \equiv\binom{s+4 b}{2 j+1} 5^{j}\left(\bmod 5^{k+1}\right) \text { for } j \geqslant 1
$$

[To prove the last congruence, note first that it is equivalent to

$$
\binom{s+4 b+4 c 5^{k}}{2 j+1} 5^{j-1} \equiv\binom{s+4 b}{2 j+1} 5^{j-1}\left(\bmod 5^{k}\right)
$$

Then, observe that the power of 5 dividing $(2 j+1)$! is exactly $j-1$ for $j=$ 1,2 , and is

$$
\sum_{\ell=1}^{\infty}\left[(2 j+1) / 5^{\ell}\right] \leqslant \sum_{\ell=1}^{\infty}(2 j+1) / 5^{\ell}=(2 j+1) / 4 \leqslant j-1 \text { for } j \geqslant 3
$$

Hence, $5^{j-1} /(2 j+1)$! is integral at 5 , and this implies the congruence.]
Let us now consider the congruence modulo 5^{k}. We obtain

$$
t_{n} \equiv\left(2^{-1}\right)^{4 b}\left(\binom{s+4 b}{1}+\binom{s+4 b}{3} 5+\cdots\right) \quad\left(\bmod 5^{k}\right)
$$

and, by the induction hypothesis, t_{n} represents the complete residue system modulo 5^{k}, for $n=s+4 b, b \varepsilon S_{k}$.

If we hold b fixed in S_{k} and let c run through the set $\{0,1,2,3,4\}$, we obtain

$$
t_{n} \equiv\left(2^{-1}\right)^{4 b}\left(\binom{s+4 b}{1}+\binom{s+4 b}{3} 5+\cdots\right)+\left(2^{-1}\right)^{4 b} 4 c 5^{k} \quad\left(\bmod 5^{k+1}\right)
$$

which are all distinct residues modulo 5^{k+1} since $\left(2^{-1}\right)^{4 b} 4 c$ takes on distinct values modulo 5. Since the five t_{n} are all congruent to

$$
\left(2^{-1}\right)^{4 b}\left(\binom{s+4 b}{1}+\binom{s+4 b}{3} 5+\cdots\right)\left(\bmod 5^{k}\right)
$$

the induction is complete.

ACKNOWLEDGMENT

We wish to thank the referee for a number of helpful suggestions and references.

REFERENCES

1. S. A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Complete System of Residues." The Fibonacci Quarterly 9 (1971):497-504.
2. L. Kuipers \& Jau-Shyong Shiue. "A Distribution Property of the Fibonacci Numbers." The Fibonacci Quarterly 10 (1972):375-76, 392.
3. H. Niederreiter. "Distribution of Fibonacci Numbers Mod 5*." The Fibonacci Quarterly 10 (1972):373-74.
4. D. D. Wa11. "Fibonacci Series Modulo m." Amer. Math. Monthly 67 (1960): 525-32.
