ON FIBONACCI NUMBERS WHICH ARE POWERS: II

NEVILLE ROBBINS
San Francisco State University, San Francisco, CA 94132
(Submitted April 1982)

INTRODUCTION
Consider the equation:

$$
\begin{equation*}
F_{m}=c^{t} \tag{*}
\end{equation*}
$$

where F_{m} denotes the m th Fibonacci number, and $c^{t}>1$. Without loss of generality, we may require that t be prime. The unique solution for $t=2$, namely $(m, c)=(12,12)$, was given by J. H. E. Cohn [2], and by O. Wyler [11]. The unique solution for $t=3$, namely $(m, c)=(6,2)$, was given by H. London and R. Finkelstein [5] and by J. C. Lagarias and D. P. Weisser [4]. A. Petho [6] showed that (*) has only finitely many solutions with $t>1$, where m, c, t all vary. In fact, he shows that all solutions of (*) can be effectively determined; that is, there is an effectively computable bound B such that all solutions of (*) have

$$
\begin{equation*}
\max (|m|,|c|, t)<B \tag{**}
\end{equation*}
$$

Similar results were obtained independently by C. L. Stewart [10], see, also, T. N. Shorey and C. L. Stewart [9]. The proofs of these results use lower estimates on linear forms in the logarithms of algebraic numbers due to A. Baker [1], and the bounds obtained for B in (**) are astronomical. In [7], A. Petho claims that (*) has no solutions for $t=5$.

In [8], we showed that if $m=m(t)$ is the least natural number for which (*) holds for given t, then m is odd. In this paper, our main result, which we obtained by elementary methods, is that m must be prime. If (*) has solutions for $t>5$, and if q is a prime divisor of F_{m}, one would therefore have $z(q t)=z(q)=m$, where $z(q)$ denotes the Fibonacci entry point of q. This requirement casts doubt on the existence of such solutions. For the sake of convenience, we occasionally write $F(m)$ instead of F_{m}.

PRELIMINARIES

(1) If t is a given prime, $t \geqslant 5$, and $m=m(t)$ is the least natural number such that (*) holds, then m is odd.
(2) $F_{j} \mid F_{j k}$
(3) $\quad\left(F_{j}, F_{k}\right)=F_{(j, k)}$
(4) $\left(F_{j}, F_{j k} / F_{j}\right) \mid k$
(5) $\quad F_{1}=1$
(6) $5^{j} \| k$ iff $5^{j} \| F_{k}$
(7) If p is an odd prime, then $p^{2} \nmid F\left(p^{j} k\right) / F\left(p^{j-1} k\right)$
(8) If $x y=z^{n}, n$ is odd, and $(x, y)=1$, then $x=u^{n}, y=v^{n}$, where (u, v) $=1$ and $u v=z$.
(9) If $x y=z^{n}, n$ is odd, p is prime, $(x, y)=p$, and $p^{2} \nmid y$, then $x=p^{n-1} u^{n}$, $y=p v^{n}$, where $(u, v)=(p, v)=1$.
(10) If $2^{k} \mid F_{m}$, where $k \geqslant 3$, then $3 * 2^{k-2} \mid m$
(11) If p is prime, then $p \mid F_{p-e_{p}}$, where $e_{p}=\left\{\begin{aligned} 1, & \text { if } p \equiv \pm 1(\bmod 10), \\ 0, & \text { if } p=5, \\ -1, & \text { otherwise. }\end{aligned}\right.$
(12) $F_{j}<F_{j k}$ if $j \geqslant 2$ and $k \geqslant 2$

Remarks: All but (1) and (4) are elementary and/or well known. (1) is the Corollary to Theorem 1 in [8], and (4) is Lemma 16 in [3].

THE MAIN RESULTS

Theorem 1
If t is a given prime, $t \geqslant 5$, and $m=m(t)$ is the least natural number such that $F_{m}=c^{t}>1$, then m is prime.

Proof: Let

$$
m=\prod_{i=1}^{r} p_{i}^{e_{i}}
$$

where the p_{i} are primes and $p_{1}<p_{2}<\ldots<p_{r}$ if $r>1$. Furthermore, assume m is composite, so that $p_{r}<m$. (1) implies $2<p_{1}$. Let

$$
d=\left(F\left(p_{r}\right), F(m) / F\left(p_{r}\right)\right)
$$

(4) implies $d \mid\left(m / p_{r}\right)$. If $d=1$, then since hypothesis implies

$$
F\left(p_{r}\right) * F(m) / F\left(p_{r}\right)=c^{t},
$$

(8) and (12) imply $F\left(p_{r}\right)=a^{t}$ with $1<\alpha<c$, contradicting the minimality of m. If $d>1$, then $p_{i} \mid d$ for some i such that $1 \leqslant i \leqslant r$. If $i<r$, then Lemma 1, which is proved below, implies $p_{i}=2$, a contradiction. If $i=r$, then (11) implies $p_{r}=5$, so $r=1$ or 2. If $r=2$, then $m=3^{a} 5^{b}$. But $F_{3}=2$, so the
hypothesis and (2) imply $2 \mid c^{t}$, hence $2^{t} \mid c^{t}$, and $2^{t} \mid F_{m}$. Now (10) implies that $3 * 2^{t-2} \mid 3^{a} 5^{b}$, so that $t=2$, a contradiction. If $r=1$, then $m=5^{e}$, which is impossible by Lemma 3, which is proved below.

Lemma 1

If p, q are primes such that $p<q$ and $p \mid F\left(q^{k}\right)$ for some k, then $p=2$ and $q=3$.

Proof: The hypothesis, (11), and (3) imply $p \mid F_{d}$, where $d=\left(q^{k}, p-e_{p}\right)$. (5) implies $d>1$, so that $d=q^{j}$ for some j such that $1 \leqslant j \leqslant k$. Therefore, $q^{j} \mid\left(p-e_{p}\right)$, so that $q \leqslant q^{j} \leqslant p+1$. But the hypothesis implies $q \geqslant p+1$. Therefore, $q=p+1$, so that $p=2$ and $q=3$.

Lemma 2
If $F\left(5^{j}\right)=5^{j} v_{j}^{e}$, where $5 \nmid v_{j}$, then $F\left(5^{j-1}\right)=5^{j-1} v_{j-1}^{e}$, where $5 \nmid v_{j-1}$.
Proof: The hypothesis and (2) imply $F\left(5^{j-1}\right) * F\left(5^{j}\right) / F\left(5^{j-1}\right)=5^{j} v_{j}^{e}$. and (7) imply

$$
\begin{equation*}
\left(F\left(5^{j-1}\right), F\left(5^{j}\right) / F\left(5^{j-1}\right)\right)=5, \tag{6}
\end{equation*}
$$

so that (9) implies $F\left(5^{j-1}\right)=5^{j-1} v_{j-1}^{e}$, and (6) implies $5 \nmid v_{j-1}$.
Lemma 3
$F\left(5^{j}\right) \neq c^{t}$ for $t>1$.
Proof: If $F\left(5^{j}\right)=c^{t}$, then (6) implies $5^{j} d=c^{t}$, where $5 \nmid d$. Now (8) implies $5^{j}=u^{t}, d=v_{j}^{t}$, so that $F\left(5^{j}\right)=5^{j} v_{j}^{t}$. Applying Lemma $2 j-2$ times, one obtains $F\left(5^{2}\right)=5^{2} v_{2}^{t}$. But $F\left(5^{2}\right) / 5^{2}=3001$, so that $v_{2}^{t}=3001$, a contradiction, since 3001 is prime.

REFERENCES

1. A. Baker. "A Sharpening of the Bounds for Linear Forms in Logarithms II." Acta Arith. 24 (1973):33-36.
2. J. H. E. Cohn. "Square Fibonacci Numbers, Etc." The Fibonacci Quarterly 2, no. 2 (1964):109-13.
3. J. H. Halton. "On the Divisibility Properties of Fibonacci Numbers." The Fibonacci Quarterly 4, no. 3 (1966):217-40.
4. J. C. Lagarias \& D. P. Weisser. "Fibonacci and Lucas Cubes." The Fibonacei Quarterly 19 (1981):39-43.
5. H. London \& R. Finkelstein. "On Fibonacci and Lucas Numbers Which Are Perfect Powers." The Fibonacci Quarterly 7 (1969):476-81.
6. A. Petho. "Perfect Powers in Linear Second-Order Recurrences." J. Number Theory 15 (1982):5-13.
7. A. Petho. "Perfect Powers in Second-Order Recurrences." (To appear.)
8. N. Robbins. "On Fibonacci Numbers Which Are Powers." The Fibonacci Quarterly 16 (1978):515-17.
9. T.N.Shorey \& C. L. Stewart. "On the Diophantine Equation $a x^{2 t}+a x^{t} y+c y^{2}=d$ and Pure Powers in Recurrence Sequences." (To appear in Math. Scand.)
10. C. L. Stewart. "On Some Diophantine Equations and Related Linear Recurrence Sequences." Seminar Delange-Pisot-Poitou, 1981.
11. 0. Wyler. Amer. Math. Monthly 71 (1964):221-22.
