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INTRODUCTION 

Consider the equat ion: 

Fm = a* (») 

where Fm denotes the 77?th Fibonacci number, and ot > 1. Without loss of gener-
ality , we may require that t be prime. The unique solution for t - 2, namely 
(m, c) = (12, 12)5 was given by J. H. E. Cohn [2], and by 0. Wyler [11]. The 
unique solution for £ = 3, namely (m9 o) = (6, 2), was given by H. London and 
R. Finkelstein [5] and by J. C. Lagarias and D. P. Weisser [4]. A. Petho [6] 
showed that (#) has only finitely many solutions with t > 1, where mscs t all 
vary. In fact, he shows that all solutions of (#) can be effectively deter-
mined; that is, there is an effectively computable bound B such that all solu-
tions of (*) have 

max(l77?l , \o\9 t) < Ba (**) 

Similar results were obtained independently by C. L. Stewart [10], see, also, 
T. N. Shorey and C. L. Stewart [9]. The proofs of these results use lower 
estimates on linear forms in the logarithms of algebraic numbers due to A. 
Baker [1], and the bounds obtained for B in (##) are astronomical. In [7], 
A. Petho claims that (#) has no solutions for t = 5. 

In [8], we showed that if m = m(t) is the least natural number for which 
(*) holds for given t, then 7?? is odd. In this paper, our main result, which 
we obtained by elementary methods, is that 77? must be prime. If (#) has solu-
tions for t > 5, and if q Is a prime divisor of Fm , one would therefore have 
ziqt) = z(q) - m5 where z(q) denotes the Fibonacci entry point of q9 This re-
quirement casts doubt on the existence of such solutions. For the sake of 
convenience, we occasionally write F(m) instead of Fm. 

PRELIMINARIES 

(1) If t is a given prime, t > 5, and 7?7 = m(t) is the least natural number 
such that (#)• holds, then m is odd. 

(2) Fj\Fjk 

(3) (Fd, Fk) =FUik) 
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(4) O j , F3.k/Fj)\k 

(5) F x = 1 

(6) 5J'\\k i f f 5J'\\Fk 

(7) I f p i s an odd p r i m e , t h e n p2 \ F(pjk)/F(pj~1k) 

(8) I f xy = zn, n i s odd, and (x9 y) = 1 , t h e n x = u n , 2/ = Vn, where ( u , 7;) 
= 1 and uv = z. 

(9) I f tfz/ = zn, n i s odd , p i s p r i m e , ( # , zy) = p , and p 2 / f ^ 5 t h e n # = pn~1un
i 

z/ = pvn, where (w, 1?) = ( p , z;) = 1 . 

(10) I f 2k\Fm, where fe > 3 , t h e n 3*2k~2\rn 
( 1, i f p = ±1 (mod 1 0 ) , 

(11) If p is prime, then p\Fp_e , where ep = < 0, if p = 5, 
(-1, otherwise. 

(12) Fd < Fjk if j > 2 and k > 2 

Remarks: All but (1) and (4) are elementary and/or well known. (1) is the 
Corollary to Theorem 1 in [8], and (4) is Lemma 16 in [3]. 

THE MAIN RESULTS 

Theorem 1 

If t is a given prime, t ^ 5, and m = rn(t) is the least natural number 
such that Fm - o^ > 1, then m is prime. 

Proof: Let 

m = II pfs 
i = l * 

where the p^ are primes and p1 < p2 < • • • < pp if p > 1. Furthermore, assume 
tfz is composite, so that pv < m. (1) implies 2 < p1. Let 

d = (F(pr), F(m)/F(pr)). 

(4) implies d |(m/p ). If d = 1, then since hypothesis implies 

F(pr) * F(m)/F(pp) = c*, 

(8) and (12) imply F(pr) = a* with 1 < a < c, contradicting the minimality of 

m. If <f > 1, then p. |^ for some £ such that I < i < p. If { < r, then Lemma 

1, which is proved below, implies pi = 2, a contradiction. If i = r, then (11) 

implies p^ = 5, so r = 1 or 2. If r = 2, then 777 = 3a5*. But F. = 2, so the 
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hypothesis and (2) imply l\ct, hence 2t\ot
9 and 2*|FOT. Now (10) implies that 

3*2t~2|3a5i, so that t = 2, a contradiction. If p = 1, then w = 5e, which is 

impossible by Lemma 3, which is proved below. 

Lemma 1 

If p, q are primes such that p < q and p|F(<7*) for some k, then p = 2 and 
<? = 3 . 

Proof: The hypothesis, (11), and (3) imply p\ Fd , where d = (qk, p - ep). 
(5) implies d > 1, so that d = <7«7 for some j such that 1 < j < fc. Therefore, 
q̂ l (p - ep), so that £7 < ̂  < p + 1. But the hypothesis implies q > p + 1. 
Therefore, q = p + 1, so that p = 2 and q = 3. 

Lemma 2 

If F(5J') = 5*Vf, where 51 v^ then F^''1) = 5j'1v^_19 where 51^.!-

Proof: The hypothesis and (2) imply F(5j'1) * F(5J') /F(5j'1) = 5jv?. (6) 
and (7) imply 

(F^'-1), F(5J')/^(5J'"1)) = 5, 

so that (9) implies F(5j~1) = 5j~1vJ_1, and (6) implies 5)(vj_1. 

Lemma 3 

F(5J') + c* for £ > 1. 

Proof: If F(5J) = e*, then (6) implies 53d = ot
9 where 5^6?. Now (8) im-

plies 5J' = u*, d = i^, so thatF(5J) = 5Jz;J. Applying Lemma 2 j - 2 times, one 
obtains F(52) = 52y|. But F(52)/52 = 3001, so that v\ = 3001, a contradiction, 
since 3001 is prime. 
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