6. D. Foata \& M. P. Schützenberger. Théorie Géométrique des polynômes Eulépiens. Lecture Notes in Math 138. Berlin, Heidelberg, New York: SpringerVerlag, 1970.
7. B. K. Karande \& N. K. Thakare. "On the Unification of Bernoulli and Euler Polynomials." Indian J. Pure Appl. Math. 6 (1975):98-107.
8. M. Mikolas. "Integral Formulas of Arithmetical Characteristics Relating to the Zeta-Function of Hurwitz." Publicationes Mathematicae 5 (1957):4453.
9. L. J. Morde11. "Integral Formulas of Arithmetical Character." J. London Math. Soc. 33 (1959):371-75.

WILHELM WERNER
Johannes Gutenberg-Universitat in Mainz

Recently I came to know Problem H-315 of The Fibonacci Quarterly (Vol. 18, 1980) which deals with "Kerner's method" for the simultaneous determination of polynomial roots. I want to comment on two aspects of the problem and its solution.

1. The method was already used by K. Wierstrass for a constructive proof of the fundamental theorem of algebra (cf. [1]). Kerner [2] realized that the method can be interpreted as a Newton method for the elementary symmetric functions; this fact is also observed in the textbook of Durand ([3], pp. 279-80) which appeared several years before Kerner's publication.
2. It is remarkable that the assumption

$$
\sum_{i=1}^{n} z_{i}=-\alpha_{n-1}
$$

is not necessary for the validity of the assertion! This fact is mentioned by Byrnev and Dochev [4] where further references are given. The proof of the assertion

$$
\sum_{i=1}^{n} \hat{z}_{i}=-a_{n-1}
$$

is easy: following Kerner's derivation of the method, one must apply Newton's method to the system of elementary symmetric functions. Hence, one of the equations reads:

$$
\sum_{i=1}^{n} x_{i}=-a_{n-1} \quad\left(x_{1}, x_{2}, \ldots, x_{n} \text { denote the unknowns }\right)
$$

