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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 

RAYMOND E. WHITNEY 

Send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, Mathematics Department, Lock Haven State College, Lock 
Haven, PA 17745. This department especially welcomes problems believed to 
be new or extending old results. Proposers should submit solutions or other 
information that will assist the editor. To facilitate their consideration, 
solutions should be submitted on separate signed sheets within 2 months after 
publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-360 Proposed by M. Wachtel, Zurich, Switzerland 

Let FnFn + 1 + F2
n + 2 = A± 

Fn+lFn+2 + Fn+3 = ^ 2 

Fn+2Fn+3 + Fn+h = ^ 3 

Show that: 

(1) No integral divisor of A is congruent to 3 or 7 modulo 10. 
(2) A1A2 + 1, as well as A±A3 + 1, are products of two consecutive integers. 

H-361 Proposed by Verner E. Hoggatt, Jr. (deceased) 

Let Hn = P2n/25 n > 0, where Pn denotes the nth Pell number. Show that 

Hm + Hn = Pk + Pk-1 

if and only if m = n + 1s where k - 2n + 1s and 

^2n + 2/2 + Pinl2 = ((2P2n + 1 + P2n) + ?2n)/2 = P2n + 1 + F2n • 

Editorial Note; Refer to the January 1972 article on Generalized Zecken-
dorf Theorem for Pell Numbers. 

H-362 Proposed by Stanley Rabinowitz, Merrimack, NH 

Let Z be the ring of integers modulo n. A Lucas Number in this ring is 
a member of the sequence {L^}s k = 0., ls 2, ..., where L0 = 2, L1 = 1, and 
Lk + 2 E £fc + 1 + Lfe for /c > 0. Prove that, for n > 14, all members of Zn are 
Lucas numbers if and only if n is a power of 3. 
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Remark: A similar, but more complicated, result is known for Fibonacci 
numbers. See [1], I do not have a proof of the above proposal, but I sus-
pect a proof similar to the result in [1] is possible; however, it should be 
considerably simpler, because there is only one case to consider rather than 
seven cases. 

To verify the conjecture, I ran a computer program that examined Zn for 
all n between 2 and 10000 and found that the only cases where all members of 
Zn were Lucas numbers were powers of 3, and the exceptional values n = 2, 4, 
6, 7, and 14 (the same exceptions found in [1]). This is strong evidence for 
the truth of the conjecture. 

Reference 

1. S. A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Com-
plete System of Residues." The Fibonacci Quarterly 9 (1971):497. 

H-363 Proposed by Andreas N. Philippou, University of Patras, Greece 

For each fixed integer k ^ 2, let < f ^ > be the Fibonacci sequence of 
order k, i.e., f^k) = 0, f^k)= 1, and l j n = 0 

, f(k\ + — + fik\ if 2 < n < k, 
1 f™ + ••• + f ( k l , if n >k+ 1. 

J n-l J
n-k 

Evaluate the series 

^ 1 

n = 0 f (fc) 
(k> 2, m> 2). 

Remark: The Fibonacci sequence of order k appears in the work of Philip-
pou and Muwafi, The Fibonacci Quarterly 20 (1982);28-32. 

H-364 Proposed by M. Wachtel, Zurich, Switzerland 

For every n, show that no integral divisor of F2n+1 is congruent to 3 or 
7, modulo 10. 

SOLUTIONS 

The Root of the Problem 

H-341 Proposed by Paul S. Bruckman, Concordf CA 
(Vol. 20, No. 2, May 1982) 

Find the real roots, in exact radicals, of the polynomial equation 

p(x) = x6 - 4x5 + lxh - 9x3 + 7x2 - 4x + 1. = 0. (1) 

Solution by the proposer 

We note that p(0) £ 0 and p(x) = xGp(l/x). Let 
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y = x + x"1. (2) 

Then y2 - x2 + x"2 + 2 and y3 = x3 + x~3 + 3y; hence, 

x~3p(x) = x3 + x~3 - 4(x2 + x~2) + 7(x + x"1) - 9 

= z/3 - 3z/ - My1 - 2) + ly - 9, | 
or 

y3 - hy2 + ky - 1 - 0. (3) 

This polynomial in z/ may be readily factored, noting that it vanishes for 
y = 1. Thus, 

(2/ - D(y2 " 3y + 1) = (y - 1) (y - a2) (y - b2) = 0. 

Now, we may solve for x in terms of z/, first multiplying (2) throughout by 
x : x2 - .#z/ + 1 = 0, or 

x = \{y ± i / ^ ^ 4 ) . (4) 

Setting 2/ = 1 or z/ = Z?2 in (4) }?ields imaginary roots of (1) (and,, moreover, 
of unit modulus). Setting y = a2, however5 yields real roots, which after a 
little manipulation are found to be as follows: 

x, = |(3 + /5 + /6/5- 2) = 2,1537214, (5) 

a:2 = \{3 + /5 - V6/5 - 2) = .46431261 = l/x1. (6) 

Also solved by W. Blumberg, H. Freitag, W. Janous, D. Laurie, D. Russell, C. 

Shields, and M. Wachtel. 

H-342 Proposed by Paul S. Bruckman, Corcord, CA 

(Vol. 20, No. 3, August 1982) 

Let 

'.-me"-,ay. n = 0, 1, 2, ... . (1) 
fc»0 

Prove that 

fe = 0 

Solution by the proposer 

Proof #1: The well-known Legendre polynomials are defined by the gener-
ating function 

(1 - 2xz + z2)-^ = X) Pn(x)^n (valid for |x| < 1, |s| < 1), (3) 
n = 0 

and are given explicitly as 

p„(*) - 2 - \ E ( f c ) ( 2 n ; 2 f c ) < - i ) k « , , - 2 k - <*> 
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(see, for example, formulas 22.3.8 and 22o9»12 in Handbook of Mathematical 
Functions with Formulas^ Graphs^ and Mathematical Tables, ed. Milton Abramo-
witz & Irene A* Stegun, National Bureau of Standards Applied Mathematics Se-
ries 55, issued June 1964, 9th printing, November 1970, with corrections). 

In (3) and (4), set x = ~i and replace z in (3) by -iz. Then 

(1 .- z - a2)"* = EP„(^)(->s)V (5) 
n = 0 

and, using the definition of An in- (1): 

Pn(±£) = t^X- (6) 
Thus5 

(1 - Z - 32)~* - 2>n(^) n » (7) 
n = 0 

Squaring both sides of (7), we obtain the generating function of the Fibonac-
ci numbers: 

w = 0 n-Q k=0 

(the last result by convolution). We obtain (2) by comparison of coefficients 
in the last two expressions. Q.E.D. 

The following Is a more direct proof :of the foregoing result. 

Proof #2: Let 

n, k = 0 

» (i - «2)-ii:o(7)(-«)B(i - *2rn - a - s2)"*!1 - r ^ i - } " ' 
or 

f(Z) - (1 - 3 - a2)"*. (9) 

The rest of the proof now proceeds as in the first proof, after (7). Q.E.D, 

The first few values of (An)nssQ are as follows: in = 1, A± = 2, i2 = 14, 
A3 - 68, An = 406* As = 2,332,''A6 = 13,964, A7 - 83,848, etc. The "etc." is 
puzzling-™-can any reader discover a closed form expression for An'l 
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Also solved by C. Georghiou. 

Continue 

H-343 Proposed by Verner E. Hoggatt, Jr. (deceased) 
(Vol. 20, No. 3, August 1982) 

Show that every positive integer, m9 has a unique representation in the 
form 

m = U 1 U 2 M 3 [...U n ]...], 
where Aj = a or a2 for j = 1, 2, . . ., n - 1, and 

where a = (1 + v/5)/2. 

Solution by Paul Bruckman, Carmichael, CA 

Let A{k) = [ak], J5(/c) = [a2/c], fe = 1,2,3, — . Note A(l) = [a] = 1 and 
5(1) = [a2] = 2, Let a "string" denote any composition of functions A or 5 
ending with 5(1) [e.g., A(B(A(B(l)))) ]. Let the length of a string denote 
the number n of functions used in the string (n = 4 in the example). Let 

A = [A(k)Tkml, B = {B(k)Tkml, N = (J<)~=1. 

It is a well-known theorem that A U B = N, A D B = 0. 
The problem is incorrectly stated, since l = A(l) is not representable by 

a string. We shall prove that all integers > 1 are representable. 
We first prove that distinct strings represent distinct positive inte-

gers. This is trivially true for n = 1, since there is only one number of 
string-length 1, namely 5(1) = 2. Also, for n = 2, we have 

A(B(l)) = A{2) = 3 and 5(5(1)) = 5(2) = 5. 

Suppose that all distinct strings of length ̂  n represent distinct positive 
integers. Then, if k is the integer represented by any string of length n, 
we have A(k) ^ 5(/c), since A C\ B = 0. Likewise, A(k) ^ B(j) s where j is the 
integer represented by any string of length less than n. If A{k) = A(j) or 
B{k) - B(j), then k = j, since A(rn) and B(m) are one-to-one functions. This 
is, however, contrary to hypothesis. Thus, all distinct strings of length ^ 
(n + 1) represent distinct integers. It follows by induction that distinct 
strings represent distinct positive integers. 

It remains to show that all positive integers m > 1 are thus represent-
able. Suppose that all integers k5 with 2 < k K m are representable. Since 
A U 5 = N, thus, m + 1 = A(j) or 5(j) for some integer j with 2 < j < m. 
Therefore, m + 1 is also representable. Since 2 = 5(1), 3 = A(B(l)), etc., 
it follows by induction that all integers m > l are representable. This com-
pletes the proof of the problem (as modified). 

Also solved by the proposer and by L. Kuipers, who remarked that the solution 
is contained in this quarterly, Vol 17 (1979):306-07. 
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Don't Lose Your Identity 

H-344 Proposed by M. D. Agrawal, Government College, Handsaur, India 
(Vol, 20, No. 3, August 1982) 

Prove: 

1- LkLL,m ~ Lk+,mLt+m ' (~l)k5Z^F2mFk + 2m and 
2- hLk + 3m - Ll+2m = 5(-l)kF2jLk + hm + 2(-l)% + 2 J . 

Solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI 

U s i n g t h e B i n e t f o r m u l a s 

Ln = an + bn and y/5Fn = an - bn 

and t h e f a c t t h a t ab = - 1 5 

LkLk + 3m ~ Lk+,mLk + m ~ (ak + bk)(ak + 3m + bk + 3m)2- (ak + "m + bk + "m)(ak + m+bk+m)2 

= (ak + bk)(a2k+6m+2(-l)k + r"+b2k+6m) 

- {ak + hm + bk + hm){a2k+2"' + 2{-l)k + m+b2k+2m) 

= a3k+6m+ (-l)k (ak + 6m) + 2(-l)k + m(ak + bk) + (-l)kbk+6m 

+ b3k+6m _.a3k+Sm _ (_1) ^ ( a ^ 2 m ) - 2 ( - 1 ) / c + m ( a / : + 1,m+ ^ + ^ ) 

- (-l)k(a2mbk)-b3k+lim 

= (-l)k[(ak + 6m+ bk + Sm) + 2(-l)m(ak+bk) 

- 2(-l)m(ak + ',m + bk + hm)- (akb2m + a2mbk)]. 
A l s o 

(-l)k52F2F, F,+7m = (-l)k(am - bm)2{a2m - b2m)(ak+2m - bk+2m) 
ffi ZTH K T Zrn 

= (-lf(a2m - 2 ( - l ) m + b2m){ak+hm - bk - ak + bk + "m) 

= (-l)k[ak+Sm - a2mbk - ak + 2m + bk + 2m - 2(-l)mak + km 

+ 2(-l)wbk + 2{-l)mak - 2{~l)mbk+hm 

+ ak+2m - bk+2m - akblm + bk + 6rn] 

= (-l)k[(ak+Sm + bk+Sm) + 2(-l)m(ak + bk) 

- 2(-l)m(ak+hm + bk+hm) - (akb2m •+ a2mbk)}. 

T h i s e s t a b l i s h e s t h e f i r s t f o r m u l a . 
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Again using the Binet formulas and the fact that ab = -1, 

k k + Sm k+2m LVL\^ - L* = (ak + bk)(ak + 3m + bk+3m)2 - (ak+zm + bk+2m)3 

= (ak + bk){azk+Bm + 2 ( - l ) f c + m + b2k+im) 

_ f 3k+Sm _j_ 3(-l)kak + 2m + 2(~l)kbk+2m
 + ^3k+Sm\ 

= a
3k+6m + (-l)kak+6m + 2(-l)k + m(ak + bk) 

+ (~l)kh^+6m + 2 j 3 ^ + 6 m - a3k+&m 

- 3(»l) f e (a f c + 2m + £ k + 2 m ) - £37c+6m 

= ( - l ) f e [ (a f c + 6m + fck+6w) + 2{-l)m{ak + fcfe) - 3(ak + 2m + bk + 2m)]. 
Also 

= (-l)k(am - bm)2[(ak+hm + 2?k + I*m) + 2(-l)m(ak+2m + bk + 2m)] 

= ( - i ) * ( a
2 w - 2 ( - l ) w + ^ 2 m )[ (a f e + l f W + ^ + ^ ) + 2 ( - l ) w ( a ^ + 2w + Z?fc+2m)] 

= (- l ) f e [a f e + 6;?7 + Z?k + 2 7 7 ? +2( - l ) m a f e + 4 m + 2(- l)mZ?f e- 2(-l)/7Za/c+lfm - 2 ( - l ) m ^ + 1 + / ? 7 

- 4a^ + 2 m - 42>k + 2m + afe+2m + b k + 6w + 2 ( - 1 ) ^ + 2 (-l)mbk+km ] 

= ( - l ) k [ ( a k + 6 m + . ^ + 6 m) + 2 ( - l ) m ( a * + bk) - 3(ak + 2m + 2 ? k + 2 w ) ] . 

This establishes the second formula. 

Also solved by P. Bruckman, W. Janous, L. Kuipers, J. Spraggon, and the pro-
poser . 

The Fibonacci Association and the University of Patras,. Greece would like 

to announce their intentions to jointly sponsor an international conference 

on Fibonacci numbers and their applications. This conference is tentatively 

set for late August or early September of 1984. Anyone interested in present-

ing a paper or attending the conference should contact: 

G. E. Bergum, Editor Professor Andreas N, Philippou 
The Fibonacci Quarterly Department of Mathematics 
Department of Mathematics University of Patras 
South Dakota State University Patras, Greece 
Box 2220 
Brookings, SD 57007-1297 
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