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INTRODUCTION 

In one of his papers [3] Bernstein investigated the Fin) function. This 
function was derived from a special kind of numbers which could well be de-
fined as 3-dimensional Fibonacci numbers. The original Fibonacci numbers 
should then be called 2~dimensional Fibonacci numbers. The present paper 
deals with n-dimensional Fibonacci numbers in a sense to be explained in the 
sequel. In a later paper [4] Bernstein derived an interesting identity that 
was based on 3-dimensional Fibonacci numbers. Also Carlitz in his paper [5] 
deals with this subject. 

If we remember that the original Fibonacci numbers are generated by the 
formula r -> 

F(n) = E (n - i), n = 1, 
i = 0 V 'l I 

2, 

then the function 

*•(«).= E (-!)*(" " i :
2 i ) 

= o 

can be regarded as a generalization of the first, and the author thought that 

<n - ki^ 
i = o 

Hn) = £ <-!)*(" ~{
ki), T< = 1.2, 

could ser've as a k - 1-dimensional generalization of the original Fibonacci 
numbers, but, regretfully, this consideration led nowhere. From the fact 
that the Fibonacci numbers are derived from the periodic expansion by the 
Euclidean algorithm of /5, there is opened a new horizon for the wanted gen-
eralization. 

In a previous paper [1], the author had followed the ideas of Perron [9] 
and of Bernstein [4] and stated a general Algorithm that leads'to an n-dimen-
sional generalization of Fibonacci numbers. 

In this paper, the author is introducing the GEA (Generalized Euclidean 
Algorithm) to investigate the various properties and applications of her k-
dimensional Fibonacci numbers. It first turns out that these ^-dimensional 
Fibonacci numbers are most useful for a good approximation of algebraic ir-
rationals by rational integers. Further, the author proceeded to investigate 
higher-degree Diophantine equations and to state identities of a larger mag-
nitude than those investigated before, in an explicit and simple form. 
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n-DIMENSIONAL FIBONACCI NUMBERS AND THEIR APPLICATIONS 

1. THE GEA 

Let w be the irrational 

w = ^Dn + 1; n > 2, D E N; x(v) = {x{v)(w), . . ., 4-i (w)) > 

(a^/ > (b^/ sequences of the form x^v\ V = 0, 1, ... . 
(1.1) 

The GEA of the fixed vector cr0^ is the sequence (aSv^\ obtained by the recur-
rency formula 

T^ + 1 ) = (n^ - hW\-i(,rW - h^ (v) Av) « - bf'y^a™ - bT, .-., a?-\ - %Llt 1) 

hf = alU)(0); i = 1, .... n - 1; v = 0, 1, ...; a™* b™. 
(1.2) 

The GEA of a^ is called purely periodic if there exists a number m such that 

ia(0^ = a(m); m is called the length of 
l the primitive period 

The following formulas were proved in [2], Let 

1 4U + n) = SV^r*'; v-0, 1, ... 
& = 0 

i4/ =6^; 6̂  the Kronecker delta, 
i , j = 0, 1, ..., n - 1; 5 = 0 , 1, ..., n - 1; 

,(U) (u)/n\ 7 n i i (y) T J U ) i 

2?k = a\ AD); k = 0, 1, , n - 1; aK
0
 J = b0 = 1 ; 

(1-4) 

A s are called the matricians of GEA; then the three formulas hold: 

,<y) 

AM 

4(y) 

n-1 

Av+l) 

A (v+ 1) 

A (v+l) 

Av + n- 1)] 

(v + n- 1)1 

Av + n- D' 
n-i 

= ( - i ) 
u(n- 1) 

a ^ = A^o 5 y = o, 1, ... ; s = 0, ..., n - 1. 
n- 1 

fe = o E4 y ) ^ + k ) 

(1.5) 

(1-6) 

fc = i k=o 
(1.7) 

Perron proved the following theorem which, under the conditions of the GEA 
(D ^ 1) , becomes 
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Theorem 1 

The GEA is convergent in the sense that 

7(0) = jiz 
lim A] (v) 

o 

lim A (v) 
, s = 1, . . . , n - . 1 (1.8) 

As
v) : AQ is called the yth convergent of GEA. 

In [1], the author proved 

Theorem 2 

If the GEA of a^ is purely periodic with m- length of the primitive pe-
riod, then 

II an-l ~ 2*, ak A0 
n- 1 

„W = 
J-n- 1 

k=0 k=Q 

is a unit in Q(w). 

From (1.9) the formula follows, in virtue of (1.7), 

v n- 1 

E 
fe = o 

(1.9) 

k = 0 

n 1 (*0 \" '\^ MAvm+k) (1.10) , y = 1, 2, ... . 

2. A PERIODIC GEA 

In this section, we construct a periodic GEA, with length of primitive 
period m = 1. The fixed vector a^ must be chosen accordingly, and this may 
look complicated at first. We prove 

Theorem 3 

The GEA of t h e f i x e d v e c t o r 

(tf(0) a(0) a ( 0 ) aKyj} ) 

(0) ^ /ft - s - 1 + i\ 

/ a< 0 ) . (0) 

a t(n 
i = 0 x 

')z/~V ( 2 . 1 ) 

s = 1, . . . , ft - 1 

is purely periodic and the length of its primitive period m = 1. 

Proof: We shall first need the formula 

= 1, . . . , n - 1. t r v ' ) - ( : ) • • - ' • (2.2) 
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This is proved by induction. The proof is left to the reader. We have, from 
(2.1), the following components of a^ which we shall use later: 

a<0) = w + (n - 1)D; a?\ = " ^ u"" 1 "^. (2.3) 
i = 0 

Since wn - Dn = 1, we also have 

"E W " " 1 " ^ = (w - D)-1. (2.4) 
i =0 

The vectors fcf (i = 1, . . . , n - l ; v = 0 , 1, ...) obtained from aSf*iw~) by 
the defining rule (1.2) are called their corresponding companion vectors. We 
shall calculate the companion vector b^ of a(°) and have 

= £ /„ - s _ 1 + i\Ds-iDi = Dej^lr 
i = 0 \ % I i=0\ 

,(0) _ y , / w - S - l + %\~B^i i „ s W B - S - 1 + "Ẑ  

so t h a t , by ( 2 . 2 ) , 

i S 

Thus, 

(
s
0) = ( " V ' s = 1, 2, . . . , n - 1. (2.5) 

fc(0) (T>. ( ; K . - . ( „ " > " - x > 
We s h a l l now c a l c u l a t e t he v e c t o r cr . From ( 1 . 2 ) , i t fo l lows t h a t 

a™ = (a<0> - i i W ^ - i f , . . . . 40-}x - i f x, 1). (2-6) 
From ( 2 . 3 ) , ( 2 . 4 ) , and ( 2 . 5 ) , we o b t a i n : 

a[0) -b[0) = U + (n - DO - ( " ) 0 = w - £> , 

i = 0 

[ ( a ' " - 4°>, a<2°>, . . . . . a^2,a*\) - a<°\ 

L(»» = a(0>, y = 1, 2, . . . . 

This proves Theorem 3. 

(2.7) 

We can prove the relation 

(af - fc(s0))(40) - bf)-* ~ a*\, s = 2, ..., n - 1. (2.8) 

Since the proof is elementary, we leave it to the reader. 
From (2.6), it follows that 

(2.9) 
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3. EXPLICIT MATRICIANS A (v + n) 

We shall proceed to find an explicit formula for the "zero-degree matri-
cians" A Q +

 3 V = 0, 1, ..., and shall make use, for this purpose, of the 
defining formula (1.4)., and the fact that the GEA is purely periodic with 
length of the primitive period m = 1. Taking into account (2.5) and (2.9), 
we have 

^ o = £ {sjD A° ; y = 0, 1, (3.1) 

We s h a l l now make use of E u l e r ' s g e n e r a t i n g f u n c t i o n . We have 

i x v = A ( :»+ E4(
0v + ZA /\Wxi 

i = 0 

1 + 

= 1 
„• - n • ?: = n \ -1- / ?: = n* z ' 

„• _ n \ ^ 1 / 

1 - [xn + 

Z»rf ^ o ^ 
i = 0 

+ 1, 

\Dkxn-k 

i = l 
<*)„ 

* < ; + <;x2 + ••• + >c '* 

EG) 
t = 0 \ f e = 0 X K / / 

- * 
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n-DIMENSIONAL FIBONACCI NUMBERS AND THEIR APPLICATIONS 
For x sufficiently small. Thus, since A0 = ... = AQ~ = 0, we have 

E ^ V =x»±(',tXl)Dk*n-k)t, 
i = n t = 0\A: = O x / c / / 

t^+i)^1 - *n± axi)**"-1)*' 
t^+i)^ «£( "til)**"-^* (3-2) 
i - o t-oVfc-cA*' / 

and comparing coefficients of powers xv on both sides of (3.2), we obtain 

(v + n) 
A 0 n (u)^) (3-3) 

n i / i + C M - l ) i / 2 + - - - + 2 i / n _ 1 + i / „ - u y z / i , z / 2 

or 

n - l 
^(v+») = \ r1 Jl n \ n ^ J+1 "ft1 /ny/fc+i 

y = o, l , 

Formula (3*4) looks very complicated. 4.0 can also be calculated by the 
recurrency relation (1.4). It is conjectured that it is easier to do so by 
formula (3.4), and would be a challenging computer problem. 

4. MATRICIANS OF DEGREE s, s = 1, 2, ..., n - 1 

In this section, we shall express "s-degree matricians," 

A^\ s = 1, . .., n - 1, 

by means of zero-degree matricians. This is not an easy task. Now we shall 
prove a very important theorem. 

Theorem 4 

The s-degree matricians are expressed through the zero-degree matricians 
by means of the relation 

4 U + n'1}= t (l)vkA{rn~S + k~l) V = 0, 1, ...;. (4.1) 
^ °  KK/ 5 s = 1, -.,., n - 1. 

Proof: From formula (1.6) it follows that 

a ^ B £ 4 V + * ^ E ^ f ^ = 1, 2, ..., » - 1; (4.2) 
* = °  fc = 0 D - 0, 1, .,. . . 
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ng ai fc 
(2.1), we obtain 
Ors writing at for a • , i = 0,...5n- 1, and substituting their values from 

i ( n - e i 1 + ty-vta^r*- EvrB- «-3> 
•i = 0 ^ 7 fe = o fe = o 

We shall now compare coefficients of if1'1 on both sides of (4.3). The power 
of wn_1 appears, on the right side only in 

an_± = w""1 + Dwn~2 +... + Z?nTl, 

and its coefficients is 

4 W + B-1). (4.4) 

So the whole problem is to find the coefficient of wn~l on the leftside, and 
this is the problem. We shall start with the first power of w in as, which 
is Ws (in the left side). Now in 

n±\*rk) 

k = 0 

we have to look for those ak
1 s which have the powers wn~s~ ; this appears in 

( r • r r . • A(V + H - S - 1)\ 

first term, coefficient = AQ J 
an_s (second term, coefficient = I )DAQ

 n J 
aw_s+17third term, coefficient = (S^D2A^ + n~ s+l)) 

(l + s)th term, coefficient (;)^(rB_1))-
Thus, we have obtained the partial sum of coefficients of wn l in the left 
side. 

A(.v + n-s.l)+ ^ M ( v + n-e)+ £ y j v + n-e+l) + ... + ^D'$+»-l\ 

Now the next power of as on the left side is ws_1 with coefficient 

( M - s - i + y = (w - S)D. 
To obtain w71'1, w8'1 must be multiplied by n - ss so we must start with the 
first term of an_ss the second term of an_s+ls ..., etc. Compared with the 
previous sum, s has to be replaced by s - 1. The sum will then be multiplied 

by (n ~ S)D, and the number of summands will be smaller by one. We then ob-

tain the partial sum: 

(n-s)z?k+n- + (8- i )<+ n-a + i )+ (s-2
iyA

(:+n-s+2)+°~~ + ( j ; ^ - ^ : " ' 1 1 
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Proceeding in this way, we obtained the partial sums: 

3 r ^ CO A ! r^f 

D CN to n 

en en to 

CO 0-3 CO CO ^ 

CO CO 

to to 
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Thus the general term in the sum of coefficients of wn~l on the left side of 
(4.3) which contains BkA^ + n~s~l + k) as a constant factor has the form, adding 
up in (4.5) the column with this factor, 

i = 0 \ 

S - 1 + i\(S ~ i \ k (v + n- s-k+k) 
i ) \ k - i ) D A * • ( 4 - 6 ) 

The following formula is well known: 

k 
(4.7) 

which becomes formula (2.2) for./c = s. Now, since in 

s / 

i = o \ 
n - s - 1 + i)ws^D,t 

the exponent of D sums from i = 0 to i = s, we have, finally, 

£ + *-!) = y ( n ^ ^ + n.l-a + JO 

which is formula (4.1) and proves Theorem 4. From formula (4.1), we have the 
single cases 

A(v + n- 1) = j^v-kn- 2) + (n
l)DA^ + n-1\ (4.8) 

and 

AT-?~1) = ATn)- (4-9) 

(4.9) is a very surprising relation and will be applied in the next section. 
Similarly, : 

+ Q < + "-2,+ (n
2)D*ATn-B\ etc. (4.10) 

(v + n-l) _ (y+ n-3) j / n \ n/I(u+n-2) ̂  /n \ n 2 ^ C ^ " 1 " n ~ s) 
^ 2 ~~ ^ 0 

5. APPROXIMATION OF IRRATIONALS BY RATIONALS 

We shall investigate especially the case D = 1, but produce first formu-
las for any value of D. We obtain from (4.8) and (1.6), 

a(0) = v~^± = l i m _J °  > 

. l i m ^ + B _ 1 ) "*" 4," + 
y->- oo U u 

/,(y+n-2) 
0 w + (n - 1)Z) - n£ + lim 

y+oo (y+n-l) 
o 

/.(y+w-2) Av+n-1) 
A0 M0 

w = D + lim — — = Z) + lim . (5.1) 
v-*°°  (y+n-1) y->oo ^y+n) 

^ 0 "^0 
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For D = 1, w = v2, and from (3.4) and (5.1) we obtain the approximation for-
mula 

<fi* I 
T,(n-i)yi + 1 = v, i=0, ..., n - l \ y i ' y2' •••' yn lk~° 

E M +y2 + • • • + J / „ \ » - I ^ + 1 

&fe = (l)> k = °> •••• « - 1; 2>0 - !• 

The approximations are not very close, and we would have to continue a few 
steps further to get a closer approximation. Formula (4.9), surprisingly 
simple as it is, does not yield any news. It enables us to calculate wn~1 by 
means of the powers i^, / c = l , . . . , n - 2 . 

We have approximately, expanding y2 = (1 + 1) n by the binomial series, 

tfT* l + 1 . 

According to our approximation formula (5.1) with D = 1, 

</l= w * 1 + 
A (n) 

,("+1)' 

0 7^4Q = ^, 

since ̂  = /0
O) + 4 °  + 

be. u(ru /0
0) = 1, <fl * 1 + -, as should 

6. DIOPHANTINE EQUATIONS 

We shall construct two types of Diophantine equations of degree n Inn 
unknowns and state their explicit solutions, which are infinite in number. 
We have from (1.5) 

Av+n) 

Av+n) 

Av + n+l) (v+n+2) 
H0 A0 

Av + n + n- 1) 

A(v+n) ^(v+n+l) A(v + n+2) A[ {v + n+n- 1) 

Av+n- 1) Av+n+ 2) Xv+ n+ n- 1) 

(-1)' 
(n- l)v (6.1) 

v = 0, 1, ... . 

/.(*) Substituting in (6.1) the values of As from (4.1) we obtain* after simple 
row rearrangements, 
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Av+3) 
1 o 

Av+2) 
0 

, ( y + i ) 

Av+n+l) Av + n+2) A(V+ n) AKU^ n-r i) A^ 
no ^o A o A (v + n + n-l)\ 

^{v + n- 1) /\(v+n^ A 
(v + n+ 1) Xv+n+n-2)\ 

Av+n- 2) Av+n- I) Av+n) 
0 ^ o ^ 0 

Av+h) 

/ . ( u + 3 ) 
0 

- ( u + 2 ) 

( y + 5 ) 

/ i . ( u + 4 ) 
0 

Av+3) 

. . 4' (y + n + r c - 3 ) 

(y + rc + 2) 
0 

(v + n + 1) 
0 

{v + n) 

= ( - 1 ) ( n - l)v (6.3) 

We introduce the notat ions 

Xv,k ~ ^ o ' ^ - , 1 , 2 , i . (6 .3 ) 

( Av+k) _ y,(y+fe- n) 
1^0 ~ ^ 0 + blAy + k-n+1)

+b2A(V
0
+k+2-n)

 + 

( £ ) # * » k - 0 , 1, . . . . n - 1, u = 1, 2 , 

+ & x ( u + f c " 1 ) 

(6 .4 ) 

We introduce these notations in (6.2) and then make the following manipula-
tions in this determinant. 

From the first row we subtract the b\ multiple of the first row from be-
low, then the b2 multiple of the second row from below, ..., then the b^th 
multiple of the kth row from below, k = 1, ..., n - 1. 

Then (6.2) takes the form, in virtue of (6.4), 

n- 1 
%v, n ~ £~* bk^v, k 

fe=l 

Av+n- 1) 
A0 

Av+n- 2) 

Av+2) 

Xv, 1 

vv, 1 

. (v + n) 

lv,2 

(v+n + 1) 

{v + n- 1) Av + n) 

A(r3) a 0>+A) 

*y, 3 

xv, n - 1 

A(v + n + n-2) 

Xv+ n+ n-3)\ 

.. i4' 
(y + n+ 1) 

. X. v, n 

(-D' (n- l)y (6.5) 

We further subtract from the second row the b2 multiple of the first row from 
below, the b3 multiple of the second row from below, .. . . , the bj< multiple of 
the (k - l)th row from below; the determinant (6.5) then takes the form (k = 
2, ' ..., n - 2): 
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n-l 
Xv,n ~ LJ bkXv, h XVt 

Y.\+lXv,l< Xv,n ~ Y,bk+lXv,k + l Xv,l + \ * V t 2
 Xv,2 + M v , 3 ' • • Xv.n-2 + blXv,n-l 

(-!)(«-Dw 

(6.6) 

Continuing this process by another step, the third row of determinant (6.6) 
will have the form 

k = i 

n-3 

k = i 
Xv,n-2 L* ^k + 2^v,k Xv,n-l ~ 2^> ®k + 2Xv,k + 1 %v,n ~ JL, ^k + 2^v, k+: 

k = ± 

Xv,l + blXv, 2 + ^2^y,3 Xv, 2 + ^lXv, 3 + ^2Xv,< 

%v,n-3 + bi%v,n-2 + ^2^v, n - 1 • 

Generally we subtract from the th row in (6.2) the bi multiple of the first 
row from below, then the bi+i multiple of the second row from below, ..., the 
bn_1 multiple of the (n-i)th row from below (i = 1, . , , , n - 1). The reader 
can verify, that by these operations the determinant (6.. 2) transforms into 
one containing only the unknowns XVj ^ (i = 1, . . . , n) , which yields the Dio-
phantine equation of degree n in these unknowns. 

7. MORE DIQPHANTINE EQUATIONS 

The GEA of a( ^ is purely periodic with length of the primitive period 
m = 1. Since 

i=0\ Z I i^0 

we have by Theorem 2 and formula ( 1 . 1 0 ) , 

{wn~1 + Dwn~2 + . . . + Dn~1)v =n£af)A%+i\ v = 1, 2, 
i = 0 

We f ind the norm of ( i / 2 - 1 + Dwn~2 +. • • • + Dn~1)v . We have 

Dn - wn = - 1 , 

Dn - w' £ (D - pkw) = -N(D - w), 

Pfc = e 

k = 0 

2T\ ik/n , fc = 0, 1, . . . , n - l . 

(7 .1 ) 

( 7 . 2 ) 
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But w"-1 + Dwn~2 + ••• + £n _ 1 = ~(D - w)'1; hence, 

N[(wn-1 + Dwn~2 +..- + Dn~1)v] = (-l)*""1^ 

We have 

n- i 

i = o 

;
3 y = 1, 2, . . . 

n = 2, 3 , . . . 

Eaf4 y + ^=<> + [»+ (n" > ] < + 1 

(7.3) 

2) 

+ 

2 + (n; > + (n 2 > 2 k + 

[U' + ( B : V D + (n22)^2 + ( n 3 > 3 ] ^ + 3 , + ---

Denoting 
n-l-k H<)T 

yv, k 

k = 0, 1, ..., n - s. 

This lv,k is n o t the ̂ u k from (6.4). We have from (7.1), 

(7.4) 

(wn Dwn + o"-!)" = Y x Vtj<iJk = e°> e a u n i t . (7.5) 

We shall find the field equation of 

n- 1 

£ = 0 

The free member of it is the norm of ev, and since ev is a unit with the norm 
(-l)^""1)^, according to (7.3), we find easily, b}r known methods, that 

%v, 2 

Xv, 1 

mXv,n-2 mXv,n-l Xv, 0 

- v, 0 

mXv, n - 1 Xv, 0 

tf?X y , 2 wJ y , 3 mX. v, 4 

wJ7. mJ y , 2 tftf y , 3 

^ y , n - 2 Xv, n - \ 

X-v, n -

vv, n - 4 A^> n - 3 x„ 

A u , 0 

/7?X 

L y , l 

y , n - l A y , 1 

- (-D 
( n - l)v (7.6) 

It is not difficult to see that, in the case n = 2m + 1 (m = 1, 2, ., 
highest powers of the n unknowns of the discriminant (7,6) as 

Xv,0> < P ^ 2 > .... ^^K.n-V 

. ) , the 
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while the last unknown, XVi n _ i does not have the exponent n, but a smaller 
one. In the case n = 2m (m = 1, 2, . ..) these n - 1 powers are the same, 
but with alternating signs, viz., 

Xl0> -mXn
Vtl, +m2X^2, .... 

In the case n = 2, the expanded discriminat (7.6) had the form 

Xl - mil = ±1, 

and in the case n = 3, it had the form 

J3 + /7/J3 + m2Z3 - 3mXYZ = 1. 

The first is Pell's equation. 

8. IDENTITIES AND UNITS 

We return to formulas (7.4) and (7.5), and have 

/ v
 n~^'k(n - 1 ~ k\Xvn+s + k) "*)r 

fc = 0, 1, ..., n - 1 

(W71"1 + Z^n~2 + . . . + Z}"'1) = E *nv k wl 

k = 0 

(8.1) 

We compare powers of wk (7c = 0,1, . . .. , n- 1) on both sides of (8.1) and take 
into consideration that wnt - m1^ - (Dn + 1)^ . We have, looking for the ra-
tional part of the right side, k - 0, and the value of the right side equals 
Xnv,o ' a n d by (7.4), 

*«,.«> - ] s ( n ; ' V m , + a V v u - ° ' *• •••••• (8-2) 

On the left side, we have to look for the coefficients of wn. Since the high-
est power in the expression 

(w*-1 + Dwn~2 + + D"-1)*" 

is n(n - l)v, we have the expression 

y 
n - 1 Jsaffi^ 
£ ( « - i)z/£ - sn^n(n~ l)y, 

n - 1 
2 C ^ + 1 = n(n- l)v- sn, e = 0 , 1, 

K " 1 Z? = Z ^ , ( 8 . 3 ) 
# ! • 2/2 

(n - l)v 

yn 
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We want to obtain in this way the rational part of 

{wn + Dwn~2 + + Dn-1y 

At the same time 

i = 1 

is the sum of the exponents of the powers of y. (i = 1, 
in every summand of 

n - 1). Since 

+ D ' 

the sum of the exponents of Dzwn x ^ (i = 0 , 1, ...,n - 1) is n - 1, and the 
highest exponent in the expansion if n(n - l)y, we have that 

n-l 

i = 1 

n-l 

i = 1 
£ (n - f)^ + 2 %i + i =

 n^n ~ x ) y ' 

which explains the left side of (8.3). We further have 

n- 1 

so that 
Z l(n - i)yi + %?: + 1] = n(n - l)v, 

h! + y2 + -- + yn = nv. (8.4) 

Now3 taking into account that the exponent of w under the summation sign in 
(8.3) equals sn5 wsn = ms

s and Dn = m - 1, formula (8.3) takes the form 

E l nv \ 
\ms(m - 1 ) = J W s 0 

:?:(%•) 
n- 1 

pk^inv+k) 

( 8 . 5 ) 
? = 0 3 1 , . . . , (n - l ) y ; i? = 0 , 1, . . . 

| ^ i + y2
 + • •* + i/n = n z ; 

(8.5) is an interesting combinatorial identity. 
From (8.1), n - 1 more identities can be obtained by comparing the coef-

ficients of the powers wl, i = 1,..-...., n - l , on both sides of (8.1). The 
identities have a somewhat complicated form; however, they will express the 
coefficients of wt, t = 1, ..., n - 1, in the expansion of 

(w""1 + 2?wn-2 + Dn-1)nv 

w i t h w n = 77Z = £ n + l : 
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£(w- i)yi = sn+ £<n(n- l)u 
t- 1 

n-l 

?^t + i = n(?2~ 1 ) y - (sn+ *) 

n- 1 - t 

(8.6) 

V In - I - t\ (nu +j'+i 

j = 0, 1, . .., (n - l)y - 1; £ = 1, . .., n - 1. 

72 - t 

We wish to explain the appearance of the factor D under the summation sign 
on the left side of (8.6). The power of D in the expantion of 

(i/1-1 + Dwn~2 + -.- + D"'1?" 

equals 
n-l 

£ ^i + 1 = n ( n ~ 1)y " (sn + t) 
i = 1 

- n{n - l)v - sn - n + (n - t) 

= n[(n - l)i? ••- s - 1] + n - t . 

Thus, the power of D equals 
(Dn^n(n-l)v-s-l . £ * " * , with Dn = m - 1. 

The power of w is 

n-l 
2 {n - i)y • - sn + t = (uw)sit;t = mswt, 

i = l 

so ms is the coefficient of wt as desired. 
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