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The function p (n) is defined as the number of partitions of the integer 
n into exactly m nonzero positive integers where the order is irrelevant. A 
general method for determining a formula for pm(n) for small values of m is 
given. The formulas are simpler in form than any previously given. 

1. INTRODUCTION 

If pm(n) is the number of partitions of the integer n into exactly m posi-
tive integers and if p*(n) is the number of partitions into at most m parts 
and p(m) is the usual partition function, then there are some simple known re-
lationships between them. 

P (ri) - p (n - m) = p (n - 1) 

P*(rc) = pm(n + m) 

pirn) = pm(2m) 

The first recurrence relationship can be solved sequentially starting with 
m = 2 to determine the exact solution for small values of m. The method is 
given in Section 2. The procedure is to determine the complementary function 
and the particular solution to satisfy the m initial conditions pm(n) = 0 for 
0 < n < m - 1 starting with p1(n) = 1. This leads to the following forms. 

P2(n) = [yyjj-] 

n3 + 3n2 + ~{9n(-~l)n 

ph(n) -[ 
p3(n) 

9n} + 32 

4!3! 

+ 3" 
3!2! 

Ps<-

pAn) 

\nh + 10n3 + 1 On2 - 75n - 45re(-l ) n + 905 1 
5!4! 

n5+22~nh+l26^n3-ll2\n2-l599in+ll2~(-l)n(n2-\-9n)+l066^n cos ^ + 19224" 
Z 3 l b ^ - ^ 3 
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HISTORICAL NOTE 

Exact determinations of pm(n) for small m have been given in a variety of 
forms by many writers. See Dickson's History of the Theory of Numbers, Vol. 
2, and The Royal Society Mathematical Tables, Vol. 4, by H. Gupta and others 
for extensive details of previous work together with references. De Morgan 
(1843) gives formulas for p3(n) and p4 (n) which are equivalent to the above 
forms (see Dickson, p. 115). In Gupta (p. xvi) , formulas are quoted in the 
form below, where p(n, 777) = p {n + m) . 

p(n, 1) = 1 

p(n, 2) = ~(n + | ) + ~{-l)n 

p{n, 3) = j^(n2 + 6n + ^~) + |(-l)n + |(a£ + a f ) 

p(n, 4) = T ^ ( n 3 + 1 5 n 2 + ^ + ^ ) + ̂ ( n + 5) (-l)n +-^-(a5"x - af " 2) 
9/3 

+ j^(in+i3n) 

where a3 = exp is a cube root of unity. 

This development is essentially due to J.W. L. Glaisher (1908) (see Gupta and 
Dickson, p. 117). Glaisher obtained complete results to m = 10 and the re-
sults are given to m = 12 in Gupta, but the formulas obtained are very com-
plicated. 

Further results are given in Gupta, but all the exact formulas given for 
small 777 are more complicated than those given here. 

SECTION 2 

Write the recurrence equation in the form 

p (n + m) - p {n) = p • (n + m - 1). 

The solution of this equation is composed of two parts. 

1. The complementary function given by the solution of 

v (n + m) - p (n) = 0 . 

This simply g ives the form 

a±Cii + a 2 a " + * • " + ama%> 

where the az; are constants and the 0^ are the mth roots of unity where a± = 1 
(say). 
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2. The particular solution is determined apart from the arbitrary con-
stant which is included in (1) by the solution of the equation 

A(rn){pm(n)} = pm_ ±(n + m - I), 

where A(m) is an operator such that 

A(w){pm(n)} = pm (n + m) - pm(n). 

Thus we can write formally 

V M = irr~T~{p An + m - 1)}, 

where . , N is the inverse operator to A ( m ) . 

To Determine the Action of A(m) 

2.1 Let p(n) be any polynomial function in n with constant coefficients. 
Then 

/ B mD B^m3D3 B6m5D5 \ 

__{p(n)} = j _ + Bi + _ i _ + _J___ + ____ + .. .J {p(n)h 
where the B are the Bernoulli numbers and the right-hand side is finite as 
p(n) is a polynomial. This is a well-known result. 

2.2 Consider A(77?) < — — — 1 , where am + .1 

am - 1 

1 {an} = —^— when "a777-^ 1. 
'• A(m) a . _ x 

2.3 Consider A(m) { -.}•,-where am = 1 

(n + m)an + m - nan 

1 -{â } = IBl w h e n a" 
A (m) m 

2.4 Let f(n) and ̂ (n) be any functions of n; then 

h(m){f(n)g(n)} = f(n + 7??)̂ (n + 777)- f(n)g(n) 

= f(n + 77?)̂ (n + 777) - f(ji)g(n + 777) 4- f{n)g(n + 777) 

- f(n)g(n) 
(continued) 
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A GENERAL METHOD FOR DETERMINING A CLOSED FORMULA 

= g(n + m)A(m){/(n)} + f {n)K{m){g(n)} 

•'• f(n)g(n) = Jfifi{g(n + w)A(m){/(n) }|+^-|/(n)A(m){?(n)}| 

^y|/-(n)A(m){?(n)}| = f(n)g(n) - j ^ \ g i n + m)A(m){/(n)} 

Put A(m){g{n)} = an 

1 nn 

3^ ~ T7^{an} = ~ if «m ̂  1 
A W am - 1 

^/(*)a»> - An) • - ^ - A k {^TT A(W){/(K)} 

= l_v_i— _ _ ^ ^ <anA(w){/(n)}V 
aw - 1 am - 1 

Thus, if /(n) is a polynomial in n, then this is a reduction formula that can 
be successively applied to determine the left-hand side. From which it fol-
lows that if am ^ 1 and f(n) is a polynomial of degree p, we have 

1 i a V W J = a " , (l + a " A(m)) \f(n)} 
A (777) ^ _ x 

a" d . - ^ - A +/__^_\V -
am - 1 \ aOT - 1 

\ a m - 1/ / 

2 .5 Consider A (TTZ){/(w)a"} , where am = 1. 

.'. A(77?){/(n)an} = f ( n + m)an + m - f(n)an 

= a " ( / ( n + 777) - f(n)) 

= anA (777) { / (n )} 

j?(n)a" ~ { a " A W { / W } J . 

Put Mm){fin)} = p(n) . 

" ^ = A^( n ) } 

••- ^ y ( ^ p ( n ) } = «»/(«) = aWA^ofP<")> i f a77? = K 
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Thus, if p(n) is a polynomial and am = 1, we have 

1 / 1 B2mD B m3D3 

A 0 ^ a n P ( n ) } = a ^ + ^ +TT + - 4 ! - . + . '--){P( w ) }'-

This determines the action of A / x in all cases. Thus, for 
Mm) 

p (n + m) - p (n) = p An + m - I), 

we have that 

Vm (") = a i < + a2a£.+ * ' * + ama^ + ̂ ^y{pw-i(^ + m - 1)}, 

where the a^ are constants and the a^ are the wth roots of unity with a±= 1. 
We have the w conditions p (n) = 0 for 0 ̂  n < /?? - 1 for the determination of 
the m constants. 

Thus, the p (n) can be determined sequentially for values of 777 starting 
with m = 2. 

Now, pi(n) = 1, 

.'• p2(n + 2) - p2(n) = px(n + 1) = 1 

p2(n) = <21(1)*.+ a2(-l)n +—^-{1} A(2)' 

ax + a2(-l) + — 

Now, p2(0) = a1 + a2 = 0 

p2 (1) = a1 - a2 + y = 0 

_I =1 
.. a1 - ^, a2 ^ 

/- P2(n) = -I + i(-l)- + 5 • .. 

Now p2(n) is an integer for all positive integral n. Now 

max j-i + j(-l)n\ = 0v for n = 2 (say). 

Thus, we can write p2(n) = —- . 

m = 3 

:. p3(n + 3) - p3(n) = p2(n + 2) = - | + {(-!)" + ^~~^ 

.. p3(n) = ax + a2( 2 ~ ~ j . + a i \ 2 J ~ 12 = 8"(" } 

(rc + 2)2 _ (n + 2) 
12 4 
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5 
72' ^2 "-3 72 

n1 7 

This gives a1 = ~JJ, a2 = a3 = ŷ -

^2 1 /, , /2nv. 

__ __ L n » , 8 (-1 + i/3\n 8 7-1 - i / 3 \ " 
12 72 8^ J 7 2 \ 2 j 72V 2 

12 + 7 2 U 6 c o s ( i f ) - 7 -9 ( - l )< 

But p 3(w) is an integer for all n, and so as 

we have p 3(n) = 

m = 4 

16(cos(^p) - 7 - 9(-l)"J = 18, for n = 3 (say, 

12 72J L 12 J" 

Pl|(n) = a, + a 2 ( - l ) " + a3(.i)" + a„ (-£)?* + :(W ^ Y 
288 

-1 + i/3\" 
(n + 3) 2 (» + 3) 1 n(-l)n i 

24 18 8 4 72 ^ + .^ 

H^r (^-i 
72 -1 -i/3 

which can be reduced to 

ph{n) = a1 + a2(-l)n + a3(i)n + ak(-i)n + 
2n3 + 6n2 - 9w,+ 9n(-l)n - 6̂  

2mr\ 
54 

, L / c 2n7T . o R • 2mI~ 
+ -7-7" 1-6 cos — — — h 2v3 s m — 7 — r-

7 9 1 
Whence a, = - -j^, a2 = 7gg> ^3

 = ^ = T6' 

9w(-l)w - 6\ 2rr + 6nz - 9n + 9r 
288 

x i f 2nTr , 0 /x , 2mr \ 
+ -T-7-(~6 cos — V 2vj s m —o~J< 54 

Now following the previous technique, since p 4(n) is an integer for all n5 we 
have, for n = 4 (say): 

imw +-kM" + &-*>' 6 2HTT , 2>/3 . 2n7T\ 7 7 
54 C°S T " + ~^T S l n ~T7 = 288' 
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'• Pif(w) 
fn3 + 3n2 + ~{9n(-l)n - 9n) + 32" 

144 

2mr 2nu 
It is clear from the above form for ph(n) which contains cos and sin 

that we need to convert formula 2.4 to a form which encompasses this type in 

order to proceed to determine p (n) for m > 5 exactly. The resulting formu-

las are in themselves interesting. If as = 1, then 

a = cos 
(2ki\\ ^ . . (2kn\ 
I + ̂  sini 1 and \ s I \ s J 

(2km\\ _,_ . . I 

i"v)+ ^ s inv an _ c o s( i + i sin I i, 
2kni\\ 

0 < k < s - 1. 

We have from 2.4 that 

1 
A(m) •{a^/} = a' 

am - 1 
1 -

a"7 - 1 
A + { /} , i f am f- 1. 

Then i t can be shown t h a t 
r + i/famA 

where /(ft) is a polynomial of degree p and as = 1 but am ̂  1 and I < /c < s - 1, 
k ^ 0. The proof is easy but lengthy. 

Similarly, 

r + l /?0??TT\ 
p cosec I 

_y- \ s ) 
r - 0 - 2

r+i 
h){*±nfc^)fin) 

AC 

m = 5 

3(-J(2w-m+rm) - . ̂ LV- A) r{/(n) } . 

Thus returning to p5(m) it can be shown using the previous formulas that 

1 (p,(n+4)} = i y i 0 +
 n" + "2 ~ 7^ A(5) 

, 9(n + 4)(-l)» , 45(-l)5 . (-1)" 

"2 2 (-1)5-1 

, 9 (-1)" in(-l - i) (-i)H(-l + i) 
288 -2 32 32 

1 2HTT 
18 C O S 3 

+ ̂ ( " i , S ± n 2WTT /3 . (2nv\ , 1 /2wr' 

— - 3i s x n n~y + 34 c o s l ~ 
Using 

32 V 
(-1 - i ) + ( - £ ) * ( - ! + i)) = 7 5 ( s i n y - c o ftTT 

(con t inued) 
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"288\T0 + n + n " V2 ~ ( 2 n + 5) j + T 6 \ s l n T" " C ° S T J 
1 2mT v3 . 2mr 

- u COS -y- ~ iy S ln i-
p (n) = C.F. + P.S., where the complementary function is 

Ju / 2kni\ , . . 2km\\ 
2^ak\cos —y- + ^ s in — ^ — j , 

which by modifying the constants afc can clearly be written in the form 

0 1 C ° S ~~S 2 C O S ~S 1 S 1 T 1 ~S 2 S i n ~T~' 

The method is clearly general. 

n = 0 

2395 
:. c0 + cx + c2 = T77280 = 3o ( s a y ) 

n = 1 • 

2 T T IT _ . 2TT , _ . TT 1061 0 
C0 + Cx COS — + C2. -COS — + 5]L Sill ~r- + 5 2 Sin — = ~ TT~OOQ" = Pi 

CQ + C1- -cos — + C2 cos — + S1 s in -^ H- 5 0 . - s i n 5 2 5 ! 5 2* 5 17,280 

n = 3 

TT 2TT TT 2TT 1061 
C0 + C1. -cos — + C2 cos — + 51 . - s i n — + S2 s in — = - , Q 

n = 4 

• „ 2TT TT , • . 2TT , _ . TT 1061 
. . C0 + C1 cos — + C2. -cos — + 5 r - s m — + 52„ - s i n — = -

Thus if we add the equations we have immediately 

i -1849 
c0 = ^ (3 0 + 3i + B2 + B3 + e o = 1 7 ) 2 8 0 x 5 -

As we are concerned with the mth roots of unity this form will be quite gen-
is 

- C2 and Si = S2 = 0. 

eral for CQ. The solution is 

1 17,208 x 5 

p5(n) = - ^ ( n * + 10n3 + 10^ - 75n - 45n(-l)* ) + ^ ( ^ l l . ) 

1 . 7-271- m r \ 1- 2̂ 7T / 3 . 2mr 1849 
K s i n T " c o s T") " T7 c o s T" " "27 s i n T " " T77280"x—5 

6912 2mr-, 6912 4rar\ 
+ T77280~^5 c o s ~ 5 " + 17,280" x 5 c o s — } -
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Again we have that the part within braces is purely trigonometric and has a 
maximum value given by n = 5 (say), which is 905/2880. 

* -n (y,\ = \ n h + 1 Q n 3 + 10n2 ~ 15n ~ 45n(-lf + 9051 .. p s W ^ _ _ j 

It would appear from previous work that we have to determine a solution to 
a set of linear equations each time we determine pm (n). But this is not the 
case as the constants C^ and S^ can be determined explicitly in terms of the 
(3̂  as follows. 

We have for the Complementary function 

' m-l . 2kmr 

. k = 0 

and for the Complete S o l u t i o n , we have 

n = 0 a0 + a1 + a2 + ••• + am_1 = 3 0 (say) 

. 2TT , 4TT . 2 Q - DTT 

n = 1 a0 + a ^ m + a ^ m + • • • + am_1eL m • = g1 

. 2(m-l)Tr , 2(W-1)2TT . 2 Q - 1 ) ( m - I)TT 

. 2-rrr . 2r2Tr .2r(m-l)n i2irr 
^ _ e _ j_ Now 1 + e m + g m + • • • + g m = = 0, as r is an integer 

< rn. ^ _ 1 

Thus, if we add, 

an 777 

To determine a19 we can essentially do the same thing. Multiply equation (2) 
_ .2T\ _-Al _ . 2(m- 1)T\ 

by e % m, (3) by e l ffl , ..., (777) by e_t" /" . . Thus, the coefficients in the 

aj column are all one. Then add the equations by columns again and we have 
-i— -j 2^m~1^ 

ma1 = 30 + B1e"\m + ••• + B ^ e " m . 

In general, 

Thus, we have the form 

2jor_ _ -20^J l i iAlL\ .2kni\ 
Y, (B0 + 6 1 ^ m + ••• + ^ . ^ "• j£ 

This is the Complementary function but not in an explicit real form, but the 
terms can be grouped to give the real form. 
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I f 7?7 i s odd > 3 , 

m- 1 

(m - 1 ) H T T (TT? - 1 ) TCTT 
+ c /( 

o s i -
\ m m 

If rn is even > 4, there is a root (-1) in the form, and we have 

= > 0 + • • • +Bn_1) + ~ ^ ( B o - S, + 32 K-,) 

+ 1 m £ 3 (c o s/2«i _ 2 k 1 \ + . . . + coJ<*-u™ _ (* - 2>^)l 
• m ~n

 k \ \ m m J \ m m ft 
k = 0 v-

Or f i n a l l y , by r e g r o u p i n g , we have, f o r m odd ^ 3 : 

- ^ < e „ + • • • + &m.o 

m-l 

2nku 
+ ~ £ ( B 0 + &i c o s — + • • • + 3 _ x c o s J 

k = l v 

m - l 

+ - E ($i s i n ^ + • • • + B m _ ! s i n 
fc = 1 V 

2{m - l)ki\\ . 2nki\ 
\ L \ s l n _ ^ 

For m e v e n > 4 , 

= ^(60 + • • • + 6m_x) + ^ - ( 6 0 - 3X + • • • - Bm-i) 

_m_-_2_ - • . ' • . • . • . . 

2 Jk / 2ki\ „ 2{m - 1 ) / O T \ ?2n/c7T 
+ 1 ^ ( 6 0 + ^ c o s i M + . . . + B m _ i c o s _ L _ _ 2 _ j c 0 S _ _ 

m - 2 

2 2 / . 2kTT , n ';. 2(m - l)ku\ . 2n/cTT 
+ ^ t ( B i s i n ~ ^ + • • • + 3 m _ x s i n s m 

T h u s , r e t u r n i n g t o p ( n ) , we h a v e t h a t t h e p a r t i c u l a r s o l u t i o n i s 

2nTT . n c o s ——-

- iFr&o--1 • * - »> - U"- f+ 8l" f ) + IT1 

+ T T J F T I S I — i "»1(2»" 6 , )+H~ f SI° T<2" - «)• 
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The Complementary function is 

n . n 2m\ . n 4nir , _ 6mr , a . 2rar , _ . km\ 
C0 + C1 cos —7— + C2 cos —7— + C3 cos —7— + Si s i n —7— + S2 s i n —7—. 

The coefficients C- are 

756| 

^ 86,400' 

s± = 0, 

480°  
C l 6 2 86,400 

1066| 
p< 
u 2 ~ r-

5156^ 
'3 86,400 

/3 x 86,400 

Thus p (n) is the sum of the two forms. Again the maximum value of the pure-
ly trigonometric part—that is, the part that does not contain any algebraic 
powers of n, is given when n = 6 and is 19,224/86,400. Hence, 

P6(") 

" V + 2l\nh + 126§n3 - 112}n2 - 1599|-n+ I12~(-I)n(n2+ 9n) + 1066-frc cos -^~ + 19224 

6!5! 

The method can of course be continued; I simply state the result for p7(n) 

|7n6 + 42n5 + 5 6 0 ^ + 1960n3 - 8725-|n2 - 45,325n- (-if • 2362j{n2+ 14n) 

7T . TT 

3 S i n 31 
p 7 ( n ) = 

+ 22,400n cosec •£ s i n ~(2n - 7) + 1 ,029,154j 

716! 

Having determined the explicit form for p6(n), it is time for some general 

remarks. Looking at the method of production, we can see that the leading 

terms are purely algebraic and that this property of the formulas will con-

tinue under the operator -7-7—7. The leading nonalgebraic power of n or, more 
^ A(/77) 

precisely, its coefficient increases when (-1) is a root of the operator .• •, 
l\{m) 

as we see from formula 2.5. 
That is for all even powers of m. Thus for m - 7 we have that the first 

four powers are purely algebraic, that is, for n6, n5, n4, and n3. For n = 8 
n5, and n4 will be, but not n3. 

The pattern is quite clear, and we can see that the first "} m + 
— j ~ \ powers 

are purely algebraic in pm (n) . We can go further than this and say that 
pm(n) contains a purely algebraic part which is a polynomial in n of degree 
(777 - 1) with rational coefficients as the Bernoulli numbers B^ are rational. 
Let this polynomial of degree (m - 1) be denoted by q (n) (say) and the trig-
onometric or nonpolynomial part by fm(n). Thus 

Pm(n) = qm{n) V tm(n)\ 

where the polynomials q (n) naturally satisfy 
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Vjn^ ~ Rmfr ~ "0 = qm_1(n - 1). 

From the forms so far determined, we have 

q3(n) = JjjTin2 - l|) 

qh(n) = jTy[(n3 + 3n2 " 4 n ~ 6l) 

<75(n) = yr^y-Cn4 + 10n3 + I0n2 -75n - 61~) 

q^n) = -gr^yCn5 + 2l\nh + 126fn3 - 112|n2 - 1599{n - 756f) 

where the constant term is just the value of C0. As the first -—-—• 

agree with p (n), an examination of the general form of these leading terms 

is required. 

3. A SERIES EXPANSION FOR q (n) 

terms 

The general form for the leading terms of qm(n) are given in [ 1 ] , where I 
also consider the problem of determining an upper bound for p (n) for arbi-
trary 7?7 and n, together with some numerical examples. For the sake of com-
pleteness, I simply quote the expansion of qm(n) given in that paper. 

?*(*> 
1 

ml(m - 1)1 ml(m - 2)!\ 4 . 1! 
(m2 - 3m\ 
\ 4 . 1! ) 
m- - 3m \ m-2 n 

where the first 

h 58 3 . 75 2 2 
m - -j m* + Jfrn ~ -§m 

2! 

{m° - ^-}~m5 + 29m4 - ^ m3 + 2m2\ 
1__ 2 nm-± 

43 . 3! / 

14§m7 + 66^fw6 - 1 0 7 ^ m 5 + 55~j~mh 

lOf^m3 + ^m2 
§5m) 

agree with the terms above if 

4! 

terms in the expansion of p (n) are algebraic and 
m + I' ) 5 or m ) 9. The polynomials can be 
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generated by means of a computer program where the summations are effected 
using the Bernoulli polynomials. This expansion, although of some interest, 
is of little use for calculating pm(n) unless n is large compared with m. 
J. W. L. Glaisher gives an expansion for qm{n) based on the "waves" of J. J. 
Sylvester (see Gupta [3]). 

Looking at the action of the operator l/A(/7?) in formulas 2.2 and 2.3, it 
is easy to see the form of the leading term in tm(n), the nonpolynomial part 
of p (n). We have 

Yn L 2 J 
for m > 4. *m(«) (-D 

'[fH^i1}'" 
4. CONCLUSION 

The method not only yields closed formulas for small values of but also 
illustrates the general structure of pm(n). The method is perfectly general 
but clearly, as the formulas are calculated recurvisely, the computations be-
come increasingly lengthy. The method can also be used to determine closed 
formulas for partitioning into an arbitrary small set of integers. The re-
currence relationship is 

P*(Pi> P2 
n) ~ P*(Pi> P2 Pm Pm) = P*(Pl> P2 Pm n) 

where p*(p1, p2, . . . , pm ; n) means the number of partitions of n into at most 
parts p13 p2, ..., pm or, equivalently, the number of solutions in integers ̂  
0 of the Diophantine equation 

Pl^l+ P2^2 + •'• + PmXm = n' 

For example, the method yields 
T^3 a. Uj2, 

1 • 2 • 3 • 5 • 3! 

This more general problem will be explored in a future paper. 

p*(l, 2, 3, 5; n) = 
n3 + 16Jn2 + 8 In + 180" 
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