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This paper is concerned with determining the length of the period of a 
Fibonacci series after reducing it by a modulus m. Some of the results es-
tablished by Wall (see [1]) are used. We investigate further the length of 
the period. 

The Fibonacci sequence is defined with the conditions f0=a9f1=$ and 
fn + i ~ fn + / f° r n '̂ !• ^e will refer to the two special sequences when 
a = 0, 3 = 1 and a = 23 $ = 1 as (Fn) and (Ln), respectively. (Ln) is often 
called the Lucas sequence. 

The Fibonacci sequence 0, 1, 1, 25 3, 5S 8, ... reduced modulo 3 is 

0, 1, 1, 2, 05 2, 2, 1, 0 ,1, 1, 2,' ... . 

The reduced sequence repeats after 8 terms. We say that the reduced sequence 
is periodic with period 8. The second half of the period is twice the first 
half. We refer to the terminology used by Robinson [2] and say that the se-
quence has a restricted period of 4 with multiplier 2 or -1 (since 2 E -1 mod 
3). If the reduced sequence, has a value of -1 at F^_x and 0 at Fk , then the 
sequence is said to have a restricted period of k with multiplier -1. The 
period of the reduced sequence is 2k. The 2k terms of the period form two 
sets of k terms. The terms of the second half are -1 times the terms of the 
first half. 

Wall [1] produced many results concerning the length of the period of the 
recurring sequence obtained by reducing a Fibonacci sequence by a modulus m« 
The length of the period of the special sequence Fn reduced modulo m will be 
denoted by p(m). 

Theorem 1 (Wall) 

fn (mod m) forms a simply periodic series. That is, the series is periodic 
and repeats by returning to its starting values, 
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We have (see [3]) : 

(1) Fm = (am - bm)/(a - b), 

(2) Lm = am + bm = Fm_1 + Fm + 1, where a = (1 + v/5)/2 and b = (1 - i/5)/2. 
Also, 

(3) F2m E 0 (mod Lm) [follows from (1) and (2)]. 

Note that 

ab = (^A^)l^A)=-l. 

Since {abV1 = ( - l ) m " 1 , we have 

a 2 * - l _ ^2/n-l _ ( - l ) - - l ( a _ & ) = a2m-l _ £2*1-1 _ ( a & ) * - l ( a _ J) 

= a 2 " " 1 - Z^^" 1 - a Z/77"1 + a f f l ' V 
= (a7""1 - ^ _ 1 ) ( a m + bm). 

From t h i s , we have 

Hence 
F2fn-1 ~ H ) " 1 B V l V 

W F2m_± = ( - l)™"1 (mod Lm). 

Theorem 2 

For m ̂  2, the Fibonacci sequence F„ (mod Lm) has period 4T?7 if m is even 
and period 2??? if m is odd. 

Proof: Suppose m is odd, and the sequence Fn (mod Lm) has period p. It 
follows from (3) and (4) that the reduced sequence has values 1 at F2m_1 and 
0 at F2m. Therefore, 2m is a multiple of p and 2m = kp for some integer k > 
0. From (2) we have Lm = Fm_± + Fm + 1 and Lm > Fj for all j<m+l,l£m>2. 
Hence, Lm cannot divide any Fj for j < m + 1, which implies that Fj ̂  0 (mod 
Lm) for any j < m. Therefore, p > ms kp = 2m < 2p, and k < 2. Thus, k = 1 
and p(Lm) = 2m. 

Suppose ?77 is even. It follows from (3) and (4) that the reduced sequence 
has values -1 at F2m_1 and 0 at F2m. This implies that the reduced sequence 
has a restricted period. Let p! be the restricted period. It follows that 
2m = k • pT for some k > 0. Again m < pr since Fj < L for all J < 777. This 
implies that k < 2 and, therefore, fc = 1. Thus, the restricted period is 2777 
and the period is 477?. • 
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