ACKNOWLEDGMENT
The author would like to thank Professors B. Coen and J. Malkevitch for their interest and stimulating conversations on the domino problem.

REFERENCES

1. D. A. Klarner \& J. Pollack. "Domino Tilings of Rectangles with Fixed Width." Discrete Mathematics 32 (1980):53-57.
2. R. C. Read. "A Note on Tiling Rectangles with Dominoes." The Fibonacei Quarterly 18, No. 1 (1980):24-27.

THE FIBONACCI SEQUENCE F_{n} MODULO L_{m}

KAROLYN A. MORGAN
The University of Alabama in Birmingham, AL 35294
(Submitted August 1981)

This paper is concerned with determining the length of the period of a Fibonacci series after reducing it by a modulus m. Some of the results established by Wall (see [1]) are used. We investigate further the length of the period.

The Fibonacci sequence is defined with the conditions $f_{0}=\alpha, f_{1}=\beta$ and $f_{n+1}=f_{n}+f_{n-1}$ for $n>1$. We will refer to the two special sequences when $\alpha=0, \beta=1$ and $\alpha=2, \beta=1$ as $\left(F_{n}\right)$ and (L_{n}), respectively. (L_{n}) is often called the Lucas sequence.

The Fibonacci sequence $0,1,1,2,3,5,8, . .$. reduced modulo 3 is

$$
0,1,1,2,0,2,2,1,0,1,1,2, \ldots .
$$

The reduced sequence repeats after 8 terms. We say that the reduced sequence is periodic with period 8. The second half of the period is twice the first half. We refer to the terminology used by Robinson [2] and say that the sequence has a restricted period of 4 with multiplier 2 or -1 (since $2 \equiv-1$ mod 3). If the reduced sequence has a value of -1 at F_{k-1} and 0 at F_{k}, then the sequence is said to have a restricted period of k with multiplier -1 . The period of the reduced sequence is $2 k$. The $2 k$ terms of the period form two sets of k terms. The terms of the second half are -1 times the terms of the first half.

Wall [1] produced many results concerning the length of the period of the recurring sequence obtained by reducing a Fibonacci sequence by a modulus m. The length of the period of the special sequence F_{n} reduced modulo m will be denoted by $p(m)$.

Theorem 1 (Wal1)

$f_{n}(\bmod m)$ forms a simply periodic series. That is, the series is periodic and repeats by returning to its starting values.

THE FIBONACCI SEQUENCE F_{n} MODULO L_{m}
We have (see [3]):
(1) $F_{m}=\left(a^{m}-b^{m}\right) /(a-b)$,
(2) $L_{m}=a^{m}+b^{m}=F_{m-1}+F_{m+1}$, where $a=(1+\sqrt{5}) / 2$ and $b=(1-\sqrt{5}) / 2$.

Also,
(3) $F_{2 m} \equiv 0\left(\bmod L_{m}\right) \quad$ [follows from (1) and (2)].

Note that

$$
a b=\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1-\sqrt{5}}{2}\right)=-1 .
$$

Since $(\alpha b)^{m-1}=(-1)^{m-1}$, we have

$$
\begin{aligned}
a^{2 m-1}-b^{2 m-1}-(-1)^{m-1}(a-b) & =a^{2 m-1}-b^{2 m-1}-(a b)^{m-1}(a-b) \\
& =a^{2 m-1}-b^{2 m-1}-a b^{m-1}+a^{m-1} b^{m} \\
& =\left(a^{m-1}-b^{m-1}\right)\left(a^{m}+b^{m}\right)
\end{aligned}
$$

From this, we have

$$
F_{2 m-1}-(-1)^{m-1}=F_{m-1} L_{m}
$$

Hence
(4) $F_{2 m-1} \equiv(-1)^{m-1}\left(\bmod L_{m}\right)$.

Theorem 2
For $m \geqslant 2$, the Fibonacci sequence $F_{n}\left(\bmod L_{m}\right)$ has period $4 m$ if m is even and period $2 m$ if m is odd.

Proof: Suppose m is odd, and the sequence $F_{n}\left(\bmod L_{m}\right)$ has period p. It follows from (3) and (4) that the reduced sequence has values 1 at $F_{2 m-1}$ and 0 at $F_{2 m}$. Therefore, $2 m$ is a multiple of p and $2 m=k p$ for some integer $k>$ 0 . From (2) we have $L_{m}=F_{m-1}+F_{m+1}$ and $L_{m}>F_{j}$ for all $j \leqslant m+1$, if $m \geqslant 2$. Hence, L_{m} cannot divide any F_{j} for $j \leqslant m+1$, which implies that $F_{j} \not \equiv 0$ (mod L_{m}) for any $j \leqslant m$. Therefore, $p>m, k p=2 m<2 p$, and $k<2$. Thus, $k=1$ and $p\left(L_{m}\right)=2 m$.

Suppose m is even. It follows from (3) and (4) that the reduced sequence has values -1 at $F_{2 m-1}$ and 0 at $F_{2 m}$. This implies that the reduced sequence has a restricted period. Let p^{\prime} be the restricted period. It follows that $2 m=k \cdot p^{\prime}$ for some $k>0$. Again $m<p^{\prime}$ since $F_{j}<L$ for all $j \leqslant m$. This implies that $k<2$ and, therefore, $k=1$. Thus, the restricted period is $2 m$ and the period is 4 m .

REFERENCES

1. D. D. Wall. "Fibonacci Series Modulo m." Amer. Math. Monthly 67 (1960): 525-532.
2. D. W. Robinson. "The Fibonacci Matrix Modulo m." The Fibonacei Quarterly 1, No. 1 (1963): 29035.
3. L. W. Dickson. History of the Theory of Numbers. Vo1. I, pp. 393-411. Washington, D.C., 1920.
