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1. Let x be an arbitrary natural number. We define, recursively, the 
following two sequences of rational integers. 

S_±(x) = - 1 , SQ(x) = 0, Sn(x) = xSn_1(x)-Sn_2(x), n > 1. (1) 

R_±(x) = 1, RQ(x) = 0, Rn(x) = xRn_1(x) + Rn_2{x), n> 1 (2) 

If x = 1 and n > 0, then Rn(x) is the nth Fibonacci number. By mathe-
matical induction, we immediately obtain 

R2n(x) = xSn(x2 + 2) (3) 
and 

R2n-1(x) = Sn(x2 + 2) - Sn_1(x2 + 2), where nE N U{0}. (4) 

The purpose of this note is to look at some divisibility properties of 
the natural numbers Rn(x) that are of great interest to some subgroup prob-
lems for the general linear group GL{2, Z ) . 

Of the many papers dealing with divisibility properties for Fibonacci 
numbers, perhaps the most useful are those of Bicknell [1], Bicknell & Hog-
gatt [2], Hairullin [4], Halton [5], Hoggatt [6], Somer [9], and the papers 
which are cited in these. Numerical results are given in [3]. Some of our 
results are known or are related to known results but are important for our 
purposes. As far as I know, the other results presented here are new or are 
at least generalizations of known results. 

2. Let p be a prime number. Let n(p, x) be the subscript of the first 
positive number Rn(x), n > 1, divisible by p. 

If p divides x} then 
n(p, x) = 2. 

If p = 2 and x is odd, then 
n(p, x) = 3. 

Henceforth, let p always be an odd prime number that does not divide x. 
Then it is known that n(p, x) divides p - e , e = 0 , 1, or-1, where 

(x2 + 4\ 

is Legendre's symbol (cf.5 for instance, [7]). 
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We want to prove some more intrinsic results about n(ps x). For this we 
make use of the next five identities; the proof of these identities is com-
putational, 

Rn+3(x) = (x2 + 2)Rn+1(x) - #„_!(*); (5) 

Rkn(x) = Sk{Rn+1(x) + Rn_1(x)) • Rn(x) i f n i s even, (6a) 

Rkn(x) = Rk(Rn + 1(x) + i ^ O c ) ) • i?„(tf) i f n i s odd; (6b) 

Rn + 1(x)Rn_1(x) - R2
n(x) = ( - l ) n ; (7) 

Rl + 1{x) - Rn + l¥(x)Rn(x) = ( - l ) n x 2 ; (8) 

R2n-1^) = Rn&) + i ?^_! (a r ) , (9a) 

a:i?2n(a:) = i?2
 + 1(a?) - i ? 2 . . ^ ) ; (9b) 

where n G N U { 0 } . 

3. The case n(p9 x) odd, Let n(ps x) - 2m- 1, m e N; i t i s m> 2. 

Proposition 1 

a, R2m + 1(x) = -i?2m_3(a:) (mod p) . 

b, i?2m_3(x) E -a:2 (mod p) . 

,C. i?2m_2(x) •= -1 (mod p). 

d. #2m~i-fc(x) E (-l)k + 1^(^)^9m-2(x) (mod P) f o r all integers k 
with 0 < k < 2m - 1.-

Proof: Statements • <a), (b)., and (c) follow directly from (3), (5), -(7), 
and (8) . 

We now prove statement (d) by mathematical induction. Statement (d) is 
true for k = 0 and k = 1 because R2m-i(x) E 0 (mod p) and i?i'(#) = 1. Now we 
suppose that statement (d) is true for all integers I with 0 ̂  £ < k? where 
1 < k < 2m - 1. 

For 1 < k < 2m ~~ 1 and k even* we obtain 

E (ttfffcOx;) +i?k-1(j:)) * i?2m_2(^) 

E (-l)fe + 2^+1(^)^2m_2(^) M p ) . 

For 1 < k < 2m - 1 and fc odds we obtain 

R2m-i-ik + i)<-^ = (~xRk(x) - Rk^(x)) • R2m„2(x) 

= (-l)fc + 2i?fc+1(x)i?2m.2(x) (modp). 

Q.E.D. 
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Corollary 1 

p E 1 (mod 4). 

Proof- Proposition 1 gives that -1 is a quadratic residue mod p. That 
means 

1 = ( y ) = ( -D ( p - 1 ) / 2 > 

and,, therefore., p E 1 (mod 4). Q„E,D. 

Proposition 2 

If p E 1 (mod 4 ) , then there is a natural number z such that 

z2 + 1 E 0 (mod p) 
and 

Ocs + l)i?^_1(a;) E s2 m (mod p ) . 

Proof: From (9) we get 

i?^(x) E - i ^ G r ) (mod p ) . 

Then there is a natural number z such that 

s2 + 1 E 0 (mod p) 
and 

Rm(x) E sfl^^Orr) (mod p) . 
Therefore3 

i?m + 1(tf) = arî Oc) + i?m_!(x) E (xs + l)Rm_1(x) (mod p) 
and 

z2m E (~l)w E i ^ O r ) ^ . . ^ ) - R2(x) E (a* + 2)R2_±(x) (mod p) 

by (7). Q.E.D. 

The following corollary is an immediate consequence. 

Corollary 2 

If p E 1 (mod p ) , then there is a natural number z such that 

z2 + 1 E 0 (mod p) 

and xs + 2 Is a quadratic residue mod p* 

Remark concerning Proposition 2: if p = 4^ + 1,q > 1, and g is a primi-
tive. root mod ps then s E ± <̂? (mod p) . But, unfortunately, no direct method 
is known for calculating primitive, roots In general without a great deal of 
computations especially for large p, 

Proposition 3 

Let n ) I be a natural number such that p divides R2n_-i(x). Then 
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i? 2 ( / c + 1)_1(x) • Sn_k(x2 + 2) E R2k_1(x) - Sn_ik + 1){x2 + 2) (mod p ) , 

for all integers k with 0 < fc < ft. 

Proof by mathematical induction: The statement is true for k = 0, since 

sn(x2 + 2) = s n _ i ^ 2 + 2> (mod P) [by ( 4 ^-

Now suppose the statement is true for an integer k with 0 < k < ft. Then we 
obtain 

R2k-1(x) • 5n_(k + 1 ) ( ^ 2 + 2) E i?2fc+1(ar) • Sn.k(x2 + 2) 

E {(x2 + 2)5n_(k + 1)(x2 + 2) - 5n_(A: + 2)(x2 + 2)) • R2k+1(x) (mod p ) . 

This gives 

E ((x2 + 2)R2k+1(x) - R2k_1(x)) • 5n_(k + 1)(x2 + 2) 

E ^(fc+D-i^) * Sn_(k + 1)(x2 + 2) (mod p) [by (5)]. Q.E.D. 

Corollary 3 

a. 0 t i?2(m_1)_1(x) • Sm_k(x2 + 2) E i?2fe-i(x) (mod P) f o r a 1 1 integers 

k With 0 < k < 772 - 1. 

b. i?2(k + ji)-i(̂ ) • ̂ -fc(^2 + 2) E i?2fc_1(a;) • £ m _ a + £)(x2 + 2) (mod p) for 

all integers k and £ with 0 < k, 0 < £, and 0 < k + £ < 777. 

Proof: Statement (b) is obviously true for k = m (if k = m then £ = 0); 
statements (a) and (b) are also obviously true for k = m - 1. Now, letting 
0</c<7?7- 2, we obtain (from Proposition 1) 

E i?^.!^) • Rzk+3(x) • Sm_{k + l)(x2 + 2) 

E R2k+3(x) • i?2/c+i(^) * ̂ -fe(^2 + 2) (mod P>> 

which gives 

^2(^ + 2)-!^) * Sm-k(&2 + 2) E i?2k_1(ar) • Sm_{k+2){x2 + 2) (mod p) 

because i?2^+1(^) ? 0 (mod p) . 
Now, by m a t h e m a t i c a l i n d u c t i o n , we o b t a i n 

i?2(/c + £ ) - i f o ) ' Sm-k&2 + 2) E R2k_^x) • ^ _ ( / c + £)(a?2 + 2) (mod p ) 

for all integers fc and £ with 0 < k, 0 < £, and 0 < fc + £ < 777 (this state-
ment is trivial for £ = 0 and just Proposition 3 for £ = 1). Now statement 
(b) is proved; statement (a) follows for k + I = m - 1. Q.E.D. 
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4. The case n(p9 x) even. Let n(p, x) = 2m, m e N; it is m > 2 because 
p does not divide x. Moreover, Sm(x2 + 2) E 0 (mod p) by (3). 

Proposition 4 

(x2 + 4)i?^_1(x) E {-\)m + 1
x
2 (mod p). 

Proof: From (6), we get 

-Rm_1(x) E i?w + 1(x) E xRm{x) + Rm_1{x) (mod p) 
and 

xRm(x) E -27?^ Or) (mod p) 

because n(p, x) is minimal. Therefore, 

( - l ) V E a 2 ( ^ + 1(a?)i?OT.1(a:) " * £ ( * ) ) = ~ ( ^ 2 + 4 ) 2 ? ^ (ar) (mod p) 

by ( 7 ) . Q.E.D. 

C o r o l l a r y 4 

If p E 1 (mod 4)5 then x2 + 4 is a quadratic residue mod p. 

Proof: If p E 1 (mod 4)5 then (— ] = 1 and the statement follows imme-
diately from Proposition 4. Q.E.D. \^' 

/x2 + 4\ 
If we ask for prime numbers p! with pr = 1 (mod 4) and ( -7—J = -1, we 

obtain the following. \ P / 

Corollary 5 (Special Cases) 

a. If x = 1, then p t q (mod 20), where q = 13 or 17. 

b. If x = 2 or 4, then p ? 5 (mod 8). 

C. If x = 3, then p f q (mod 52), where q = 5, 21, 33, 37, 41, or 45. 

d. If x = 5, then p $ q (mod 116), where q = 17, 21, 37, 41, 61, 69, 73, 
77, 85, 89, 97, 101, 105, or 113. 

Analogous to Proposition 1, Proposition 3, and Corollary 3, we obtain 
the following results. 

Proposition 5 

a. R2m + Z(x) E -R2m_z(x) (mod p). 

b. Rz
lm^2(x) E x2Sm_1(x2 + 2) E x2 (mod p) . 

.C. ^ ^ W = 1 (mod p). 

d. R2rn_k(x) E (-l)k+1i?fc(a:)i?2/n„ x Or) (mod p) 

for all integers fc with 0 < k < 2m. 
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Proposition 6 

Let n ) 1 be a natural number such that p divides R2n(x). Then 

R2k(oo) • Sn_(k+1)(x2 + 2) E R2(k + 1)(x) • Sn„k(x2 + 2) (mod p) 

for all integers k with 0 < k < n. 

Corollary 6 

a. 0 ^ fl^.^Oc) • ̂ -fe(^2 + 2) = fl^Oc) (mod p) 

for all integers k with 0 < k < w - 1. 

for all integers fc and I with 0 < k, 0 < £, and 0 < Zc + £ < m. 

5. Final Remark. 1 wish to thank the referee for two relevant refer-
ences that were not included in the original version of the paper. He also 
noted that some results of this paper are special cases of results of Somer 
[9] for the sequence 

TQ(x, y) = 0, T1(x9 y) = 1, Tn(x, y) = xTn_1(x) y) + yTn_2(x, y), n > 2, 

where x and y are arbitrary rational integers. Proposition 1(c) is a spe-
cial case of Somer's Theorem 8(i); Proposition 2 is a special case of his 
Lemma 3(i) and the proof of his Lemma 4 when one takes into account the hy-
pothesis that (-l)/(p) = 1; Corollary 4 is a special case of Somer !s Lemma 
3(ii) and (iii); finally, Proposition 5(c) is a special case of his Theorem 
8(i). 

But, on the other side, some results of Somer's paper follow directly 
from known results about the numbers Sn(x) and Rn(x). For, let x and y now 
be arbitrary complex numbers with y £ 0. Let Sn(x), Rn(x), and Tn(x9 y) be 
analogously defined as above. Then 

Tn(x, y) = {^r^sJ-^A = ( V ^ - W - ^ V n> 0, 

where Vy and v-y are suitably determined (see, for instance, [7]). 
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LETTER TO THE EDITOR 

JOHN BRILLHART 
July 14, 1983 

In the February 1983 issue of this Journal, D. H. and Emma Lehmer introduced 
a set of polynomials and, among other things, derived a partial formula for 
the discriminant of those polynomials (Vol. 21, no. 1, p. 64). I am writ-
ing to send you the complete formula; namely, 

D(Pn(x)) = 5n-1n2n~hF1
n

n-\ 

where Fn is the nth Fibonacci number. This formula was derived using the 
Lehmers' relationship 

(x2 - x - l)Pn(x) = xzn - Lnxn + (-l)n, 

where Ln is the Lucas number. Central to this standard derivation is the 
nice formula by Phyllis Lefton published in the December 1982 issue of this 
Journal (Vol. 20, no. 4, pp. 363-65) for the discriminant of a trinomial. 

The entries in the Lehmers1 paper for D(l?h(x)) and £>(P6(x)) should be cor-
rected to read 

28 • 3" • 53 and 232 • 38 • 55, 

respectively. 
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