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ABSTRACT 

The generalized Fibonacci numbers {un}, 

Un+2 = Un+1 + Un> Ul = a> U2 = ^' (a> ^ = l > 

induce a unique additive partition of the set of positive integers formed 

by two disjoint subsets such that no two distinct elements of either sub-

set have un as their sum. We examine the values of a special function 

En(m) = mun_1 - u [mun_1/un\, m = 1, 2, . . ., un - 1, n > 2, 

and find relationships to the additive partition of N as well as to Wy-
thoff!s pairs and to representations of integers using the double-ended 

sequence {un}_00 and the extended sequence {un}_m . We write a Zeckendorf 

theorem for double-ended sequences and show completeness for the extended 

sequences. 

1. TABULATION OF En(m) FOR THE FIBONACCI AND LUCAS SEQUENCES 

We begin with the ordinary Fibonacci sequence {Fn}, where F± = 1, and 

F = 1, and Fn+2 = Fn+1 + Fn. We tabulate and examine a special function 

En(m), defined by 

En(m) = mFn_1 - Fn[mFn_ 1/Fn], m = 1, 2, ..., Fn - 1, n > 2, (1.1) 

where [x] is the greatest integer function. Notice that n = 2 gives the 
trivial E2(m) = 0 for all m, while E3(m) is 1 for m odd and 0 for 777 even. 

The table of values for En{m) (Table 1.1) reveals many immediate pat-

terns. First, En(m) is periodic with period Fn , and the rth term in the 
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cycle is En(r) = iiFn_1 (mod Fn) . We could easily show, using properties 

of modular arithmetic and of the greatest integer function, that 

M D = Vi» V 2 ) = V 3 » EnO) = Ln_2, E„W = 2Fn^. 
Also, counting from the end of a cycle, we have 

En(-D = Fn_2, En(-2) = 2Fn_2, En(-3) = Fn^, 2?„(-4) = Ln_3, 

which also can be established by elementary methods, but these apparent 

patterns are not the main thrust of this paper. 

TABLE 1.1 

VALUES OF EAm) FOR THE FIBONACCI SEQUENCE 

n - 4 n = 5 n - 6 n = 7 n = 8 
En(m): 2m-3[f] 3m - 5 [f] 5« - 8 [ f ] 8. - 13g] 13m - 2 l [ ^ ] 

77? = 

m = 
m = 
777 = 

777 = 

777 = 

77? = 

777 = 

77? = 
777 = 

77? = 

m = 
777 = 

m = 
m = 
m = 
77? = 

m = 
77? = 

777 == 

777 = 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
0 
2 
1 
0 

3 
1 
4 
2 
0 
3 
1 
4 
2 
0 
3 
1 
4 
2 
0 
3 
1 
4 
2 
0 
3 

5 
2 
7 
4 
1 
6 
3 
0 
5 
2 
7 
4 
1 
6 
3 
0 
5 
2 
7 
4 
1 

8 
3 

11 
6 
1 
9 
4 

12 
7 
2 

10 
5 
0 
8 
3 

11 
6 
1 
9 
4 

12 

13 
5 

18 
10 

2 
15 

7 
20 
12 

4 
17 

9 
1 

14 
6 

19 
11 

3 
16 

8 
0 

We need two other number sequences, derived from the Fibonacci numbers. 

We write the disjoint sets {An} and {Bn}$ which are formed by making a 
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partition of the positive integers such that no two distinct members from 

A and no two distinct members from B have a sum which is a Fibonacci num-
ber. We also write the first few Wythoff pairs (an, bn) [1] for inspec-

tion. 

A, Bv 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
3 
6 
8 
9 
11 
14 
16 
17 
19 

2 
4 
5 
7 
10 
12 
13 
15 
18 
20 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
3 
4 
6 
8 
9 
11 
12 
14 
16 

2 
5 
7 
10 
13 
15 
18 
20 
23 
26 

We note that the Wythoff pairs are given by 

an = [na] and bn = [na1], (1.2) 

where [x] is the greatest integer contained in x and a = (l+v5)/2 is the 
Golden Section ratio. Also, bn = an + n9 and an is the smallest integer 

not yet used. It is also true that no two distinct bn's have a Fibonacci 

number as their sum, and that {bn} C {Bn}. 
Now, examine the periods of the values of En(m): 

5: 6: n = 7: 

3 
1 
4 

un 

2) > bn 

3 
1 

4 
2 

}̂ n 5 
2 
1 

4] 
1 
6 
3 

• & w 

•a* 

5 
2 
7 
4 

1 
6 
3 

Bn 

A-n 

3 
11 
6 
1 
9 
4 
12 , 

r 2 
10 
5. 

[ &n 

>bn 

3 
11 
6 
1 
9 

4 
12 
7 
2 
10 
5 
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13 
5 

18 
10 

2 
15 

7 
20 

1 3 1 

5 
18 

>t>n 2 

15 
7 

20 
12 

4 

n = 8: 

1 12' 
4 

17 
9 

. 7 ? X 
Dyi 14 

6 
19 
11 

3 
16 

8 

171 

9 
1 

14 
6 

19 
• CLn ^ ^ 

3 
16 

8 

Notice that the integers 1, 2, 3, ..., fn - 1, all appear, but not in 

natural order. Each cycle is made up of early values of {an} and {bn}, 
and of early values of {An} and {Bn}, not in order, but without omissions. 

If we apply En(m) to the Lucas numbers Ln, defined by L± = 1, L2 = 3, 

Ln+z = ^n+i + ^n» so that we consider 

En(m) = mLn_1 - Ln[mLn_1/Ln], m = 1, 2, ..., Ln - 1, (1.3) 

then we get the integers 1, 2, 3, . .., Ln - 1 in some order. Recall our 

generalized Wythoff numbers an3 bn9 and on [1, p. 200]. We obtain within 

each cycle a segment of {an}, a segment of {cn}> and a segment of {bn}s 

where each segment is complete (the first few terms of each sequence with-

out omission, but not in order). This same cycle contains the first few 

terms of {An}s out of order, but without omissions, followed by the first 

few terms of {Bn}, where {An} and {Bn} is the unique split of the positive 

integers induced by the Lucas sequence such that no two elements of {An}, 
and no two elements of {Bn}9 have a Lucas number for their sum. 

To illustrate the Lucas case, we write the first twelve values of the 

generalized Wythoff numbers, and early values of the partition sets: 

n 

1 
2 
3 
4 
5 
6 

A 

1 
4 
5 
8 
9 

11 

Bn 

2 
3 
6 
7 

10 
13 

n 

1 
2 
3 
4 
5 
6 

°<n 

1 
4 
5 
8 

11 
12 

bn 

3 
7 

10 
14 
18 
21 

^n 

2 
6 
9 

13 
17 
20 
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bn 

1 
8 
9 
10 
11 
12 

15 
16 
19 
22 
23 
26 

25 
28 
32 
36 
39 
43 

24 
27 
31 
35 
38 
42 

7 
8 
9 
10 
11 
12 
13 
14 

12 
15 
16 
19 
22 
23 
26 
27 

14 
17 
18 
20 
21 
24 
25 
28 

Now, examine the periods of values of En(m) for the Lucas sequence: 

n = 4 : 

km - 7 [4m/7] 

41 
1 
5J 

CL* 1 \An 

h°» !} 
3} bn 

7m 

n = 5 : 

- l l [777z/ l l ] 

I*- ,!l 
]• il 

7 
3 

10 
6 
2 

9 
5 
1 "•n 

n = 6: 

l b n - 18[ll/7z/18] 

i r 
4 
15 
8 
1 
12 
5 
16, 

91 

2 
13 
6 
17. 

10' 
3 
14 
7. 

11 
4 
15 
8 

" ̂ n i 

12 
5 
16 
9 

2 
<?n 13 
1 6 

17 
10 
3 

'K 7 

18w 

18 
7 
25 
14 
3 
21 
10 
28 

17 
6 
24 
13 
2 
20 
9 
27 

16 
5 
23 
12 
1 
19 
8 
26 
15 
4 
22 

7: 

29[18TW/29] 

18 
7 
25 
14 
3 
21 
10 
28 
17 
6 
24 
13 
2 
20 

9 
27 
16 
5 
23 
12 
1 
19 
8 
26 
15 
4 
22 

For comparison, the generalized Wythoff numbers are formed by letting an 

be the smallest positive integer not yet used, letting cn = bn - 1, and 
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forming bn = an + dns where dn + bk + 1. Letting the generalized Wythoff 

numbers be denoted with an asterisk, we can express them in terms of Wy-

thoff pair numbers as 

a* = 2an - n, b* = bn + n = an + 2n, c* = an + In - 1 = aa + n. 

It is also true that a^ + a^f ^ Lm, b* + M ^ Z^, and the Lucas generalized 

Wythoff numbers and the Lucas partition sets have the subset relationships 

{an} C {An} and {bn) C {#„}. 

2. ZECKENDORF THEOREM FOR DOUBLE-ENDED SEQUENCES 

Before considering representations and additive partitions regarding 

the generalized Fibonacci sequence {un}™m9 where u1 - a and u2 = b, Un + 2 = 

un + 1 + un, we consider representations of the integers in terms of special-

ized {un}, where u1 = 1 and u2 = p. 

Theorem 2.1 (Zeckendorf Theorem for double-ended sequences): Let p > 1 be 

a positive integer, and let un + 2 = un+1 + uni u1 - 1, u2 = p. Then every 

positive integer has a representation from {uj.^, provided that no two 

consecutive Uj are in the same representation. 

Proof: We need to recall two major results from earlier work. David 

Klarner [2] has proved 

Klarner's Theorem: Given the nonnegative integers A and B, there exists a 

unique set of integers {kl9 k2> k3s ..., kr} such that 

A = \ + \ + • • • + *kr 

for \k • - k-\ > 2, i ^ j, where each î- is an element of the sequence 

{F-T . 

When u = 1 and u = p5 we know from earlier work that 

for all integral n. Next, if we wish a representation of an integer 777 > 0, 

we merely solve 
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B = m = Fki +Fk2 + ••• +Fkr 

which has a unique solution by Klarner's Theorem. A constructive method 

of solution is given in [3]. Thus, 

m = w*i+1+ uK+1+ ••• + uK+1 

= p(Fki + l+ Fki + 1+ ••• + FK+1)+ (Fki + Fk%+ ••• + Fkr) 

We note in passing that the representation we now have is independent of 

the explicit p > 0. 

Theorem 2.2: The Fibonacci extended sequence is complete with respect to 

the integers. 

Proof: Since 1, 2, 3, 5S 8, 13, . .., is complete with respect to the 

positive integers, one notes 

F_„ = (-Dn + 1F„, 

and, therefore, one can pick out an arbitrarily large negative Fibonacci 

number. Consider M an arbitrary negative integer, and there exists a Fi-

bonacci number F_k such that F_k < M < 0. Now, M - F_k = N, which is pos-
itive and has a Zeckendorf representation using Fibonacci numbers, and 

M = N + F_-, is the representation we seek. 
Since un + 2 = un + 1 + un9 if it consists of positive integers as n -> °°, 

then, as n -> -°°, the terms become alternating and negatively very large. 

Thus, the same thing holds for the generalized Fibonacci numbers once we 

know that they are complete with respect to the positive integers, finish-

ing the proof of Theorem 2.1. 

Completeness of the generalized sequence {un}_00 is equivalent to show-

ing that every positive integer is expressible as the sum of a subsequence 

{un}™m , m > 0, where m is independent of the integer chosen. We show some 

special cases: 

1, 1, 2, 3, 5, ... Already complete. 

1, 2, 3, 5, 8, ... Already complete. 

1, 3, 4, 7, 11, ... 
Complete when L0 = 2 is added to the sequence. 
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Case 4: p = 4 1, 4, 5, 9, 14, 23, ... Complete when 
uQ = 3 and u.^ = -2 are added to the sequence. 

Case 5: p = 5 1, 5, 6, 11, 17, ... Complete when 
uQ = 4 and u_x = -3 are added to the sequence. 

Case 6i p = 6 1,6,7, 13, 20, ... Complete when 
uQ = 5, W.-L = -4, and u_2 = 9 are added. 

Case 7: p = 1 1, 7, 8, 15, 23, ... Complete when 
u0 = 6, u_± = -5, u_2 = 11, and u_3 = -16 are added. 

Case 8: p = 8 1, 8, 9, 17, 26, ... Becomes complete when 
u0 = 7, w ^ = -6, w_2

 = 13, and u_3 = -19 are added. 

Next we consider the generalized Fibonacci sequence. 

Theorem 2.3: Let un + z = un+1 + un, where u± = a, u2 = bs and (a, b) = 1, 

b ^ a^ 1. Then, every positive integer has a representation from {un}_0O 

provided that no two consecutive Uj are in the same representation. 

Proof: It is known that the generalized Fibonacci numbers are related 

to the ordinary Fibonacci numbers by 

un + 1 = bFn + aFn.1. (2.1) 

Let m be a positive integer, m > b. Then we can always write 

m = bA + aB 

for some integers A and 53 since (a, b) = 1. If both ̂  and 5 are nonnega-

tive, we are done, since the dual representation of A and B5 by Klarner*s 

Theorem, leads to a representation of m via (2.1). If A or 5 is negative, 
notice that, since the ordered pair (A$ B) is a lattice point for a line 

with slope -b/a and ^-intercept mla, if we can add an arbitrarily large 

integer to m» then we can raise the line so that it crosses the first quad-
rant and we will have nonnegative values for A and B. Thus, choose u, < 0 

with an absolute value sufficiently large, and we represent 

m - u_k = M * + aB* 

for A* and B* nonnegative. We then represent m - u_k via Klarnerfs Theo-

rem, and add u_k to that representation to represent m. Similarly, if 

m < b, since the negatively subscripted terms of Un become negatively as 

large as we please, choose u_k < 0 so that m - u_^ > i, represent m - u_^ 

1984] Q 



ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS 
AND GENERALIZED FIBONACCI REPRESENTATIONS 

as above, and then add u_k to the representation. 

3. A PATTERN ARISING FROM KLARNER'S 

DUAL ZECKENDORF REPRESENTATION 

Recall the Klarner dual Zeckendorf representation given in Section 2, 

where 

A = \ + l + \ + l + "" + F ^ + 1= 0 

B = F, + Fk + ••• + F, = n, 

where n = 1, 2, 3, . .., \ki - kj\ > 2, i £ j , and Fj comes from {Fj-}™m. 
The constructive method for solving for the subscripts kj to represent A 
and B described in our earlier work [3] leads to a symbolic display with 

a generous sprinkling of Lucas numbers. Here we use only two basic for-

mulas , 

This allows us to push both right and left. We continue to add F_1 = 1 at 
each step, using the rules given to simplify the result. For example, for 

n = 1, we have F_± = 1. For n = 2, F_± + F_1 = 2F_1 = FQ + F_3 = 2. For 

n = 3 , F _ 1 + F 0 + ^ 3 becomes Fx + F_3 = 1 + 2 = 3. We display Table 3.1. 

Strangely enough, the Wythoff pairs sequences enter into this again. 

The basic column centers under F_ . The display is for expressions for B 
only; A is a translation of one space to the right. At each step, B = n, 
and ,4 = 0. 

From Table 3.1, many patterns are discernible. There are always the 

same number of successive entries in a given column. Under F_2 there are 

L1; under F_3, L2; under F_4, L3; and under F_5, L^. Under F_6 there are 

L5 successive entries, starting with B = 30, and under F_7 there are L6 

successive entries. On the line for B = 47, there are only two entries, 

one corresponding to F_3 = 34 and one to F? = 13, so that 34 + 13 = 47 as 

required, while F_ = -21 and F = 21 have a zero sum as required. 

The columns to the right of F_1 (under F0, for instance) have Ln ± 1 
alternately successive entries, but the same numbers of successive entries 

always appear in the columns. Once we have all spaces cleared except the 
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extreme edges in the pattern being built, we start again in the middle, as 

in line 48 or line 19« 

TABLE 3.1 

B F-3 F-B F~7 FS F-5 F-, F-3 F-2 F-l F0 Fl F2 F3 F, ^5 ^6 

1 X 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 x 

X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 
X 
X 
X 

X
X

X 

X 
X 

X 
X 
X 

X
X

X 

X
X

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

k. REPRESENTATIONS AND ADDITIVE PARTITIONS FOR 

THE SEQUENCE 1,4,5, 9, 14, 23, ... 

We make the following array: 

An = first positive integer not yet used 
Bi(n) = Bn - 2 
B2(n) = Bn - 1 
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where dn £ Aj and goes through the complement of {An} in order, except we 

do not use B1(n) opposite the second of a consecutive pair of A n ; i.e., we 
do not use B1(n) if A n = A n _ 1 + 1. The underlined numbers in the follow-

ing table cannot be used for dn. 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

A 

0 
1 
5 
6 
10 
14 
15 
19 
20 
24 
28 

B^n) 

2 
1 

11 
16 
21 
25 
30 
34 
39 
44 

B2(n) 

3 
8 
12 
17 
22 
26 
31 
35 
40 
45 

Bn 

4 
9 
13 
18 
23 
27 
32 
36 
41 
46 

dn 

3 
4 
7 
8 
9 
12 
13 
16 
17 
18 

We now have the following constant differences, where (a„, bn) is a 

Wythoff pair: 
(5, n = ai 

Bn+1 ~ Bn= I (4.1) 
14, n = bj 

!

4, n = a{ 
(4.2) 

1, n = bj 
Alternately, 

A n = 3an - In = (2n - a„) • 1 + (an - ri) • 4 

5^ = a„ + 3n = (2n - an) • 4 + (an - ri) • 5 

Apparently, dn ^ 5j + 1 and dn ^ Bj + 2. 
This extends for the sequence 1, p, p + 1 , ...5 ^n+2

 = ; 

5- REPRESENTATIONS AND ADDITIVE PARTITIONS USING THE 

GENERALIZED FIBONACCI NUMBERS 

We consider the general case for (a, b) = 1, and 

u1 = a, u2 = b, un+2 = un+1 + un. 

First we have a unique additive partition and the function 

ln + l + un' 

(4. 

(4. 

• 3 ) 

•4) 
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En(m) = mun_1 - un[mun_1/un]5 m = 1, 2} ..., un - 1 (5.1) 

generates 1, 2, 3, ..., w„ - 1, but, of course, not in natural order. One 

set of the additive partition includes 1 < m < un/2, while the other has 

un/2 < m < un~ 1. Suppose 0 < a* < b*; then the values of En{m) are split 

into b* disjoint sets whose first elements are 1, 2, 3, . .., a* > . .., b*. 
The elements of the sets to the left of a* are, correspondingly, 1 less, 2 
less, 3 less, ..., as we go to the left, while the sets between a* and b* 
have their values 1 less, 2 less, 3 less, ..., than b*. Each element sat-

isfies 

1 + J5 
(5 .2 ) 

an + i " an = £> n £ {#&}* afc = [fca], a 
a*+l " an = a> n E ibk}> bk = [to2]. 

The a* are the representations using 

a + a2b + a3u3 + ..., ai = 0 or 1, 

while we can show 

a* = {In - an)a + (an - ri)b (5.3) 

fc* = {In - an)b + (a„ - n)(a + 2?) (5.4) 

because of the formula 

Let a* = {a + a2u2 + a3u3 + •••} in natural order. Then 

a* = Z?F0 + aF_1 + a2(Z?i?7
1 + aFQ) + ••• 

= 2?(F0 + a2F1 + a 3 F 2 + . . . ) + a(F_± + a2FQ + - • • ) 
= a(2?z - a n ) + Z?(an - ri) 

s ince 
an -> n -> a n - n ->• 2n - a n . 

Thus, once we know that an+1 - an = 2 for n = â- and an + 1 - an = 1 for 
n + a-, and wn + 1 = ̂  + aFn_x, we have (5.3) and (5.4). Further, these 

a* and b* a^e the generalizations of the Wythoff pair numbers an = [wa] 

and bn = [na2] themselves (a = ~—z 1. 
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6. REPRESENTATIONS AND ADDITIVE PARTITIONS ARISING FROM 

TWO SUCCESSIVE FIBONACCI NUMBERS 

It is well known that if we start with 1 and 2, we get the Wythoff 

pairs and have a unique additive partition of the positive integers. Next, 

to see something else, take 2 and 3. Since (2, 3) = 1, we still have the 

same additive partition of the positive integers, and the function En(m) 
of (5.1) and (1.1) still yields the residues mod Fn, but our array changes 

in an interesting way. 

TABLE 6.1 

2, 3, 5, 8, 13, 21, ... 

1 
4 
6 
9 
12 
14 
... 

aa 

w = 

2 
5 
7 
10 
13 
15 
... 

K 
2 

3 
8 
11 
16 
21 

. . . 

W = 3 

^•n 

1 
3 
6 
8 
9 
11 
14 
16 
17 
19 

Bn 

2 
4 
5 
7 
10 
12 
13 
15 
18 
20 

Note that, if we give a weight one and b weight two, we have the weights 
abbreviated by W above. The successive values of En(m) are the same as 

before, but we now have a different split to look at. Note that A and B 
are formed so that no two elements of either set have 2, 3, 5, 8, 13, ..., 

as their sum. Now let us look at En(m) for 13 = Fn_1 and 21 = Fn ; i.e., 

En{m) = \2m - 21[ 13^/21]. 

The twenty values in the cycle are: 

13, 5, 18, 10, 2, 15, 7, 20, 12, 4, 17, 9, 1, 14, 6, 19, 11, 3, 16, 8. 

The first 10 are elements of Bn; the other 10 are An. The first 8 have 

the form bn ; the next 8 have the form aaj the last 4 have the form ab . 
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Now look at the array induced by 3 and 5 as a starting pair. 

TABLE 6.2 

3, 5, 8, 13, 21, 34, ... 

1 
6 
9 
14 
19 
22 
27 

... 

aa 
an 

2 
1 
10 
15 
20 
23 
28 

... 

^n 

W = 3 

3 
8 
11 
16 
21 
24 
29 

... 

On 

4 5 
12 13 
17 18 
25 26 
33 34 
38 39 
46 47 
51 52 
... ... 

abn
 bn^ 

W = 4 

An 

1 
3 
6 
8 
9 
11 
14 
16 
17 
19 

Bn 

2 
4 
5 
7 
10 
12 
13 
15 
18 
20 

The A n and Bn are the same as before. 

Return to the values of En(m) for 13 and 21 given above. Notice that 

the first 3 values—13, 5, 18—come from bh ; the next 5 from bn ; the 
Dn n 

next 3 from aa_ ; then five from a a ; and, lastly, 4 from ah . We begin 
bn

 an un 
to see familiar patterns emerging [4], [5]. 

We write the array induced by 5 and 8 in Table 6.3. 

TABLE 6.3 

5, 8, 13, 21, 31*, 55, ... 

1 
9 
14 
22 
30 
35 
43 

Go 

2 
10 
15 
23 
31 
36 
44 

Five 

3 
11 
16 
24 
32 
37 
45 
. . . 
aban 

of wei 

4 
12 
17 
25 
33 
38 
46 
. . . 

ght 4 

5 
13 
18 
26 
34 
39 
47 
. . . 

h 
On 

6 
19 
27 
40 
53 
61 
74 
• • 

Three 

7 8 
20 21 
28 29 
41 42 
54 55 
62 63 
75 76 
... ... 
habn ahn 

of weight 5 

"•n 

1 
3 
6 
8 
9 
11 
14 
16 
17 
19 

Bn 
2 
4 
5 
7 
10 
12 
13 
15 
18 
20 
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Since an and bn are elements in complementary sets, the array on the left 

covers the positive integers. Note that the additive partition sequence 

An and Bn is the same for (1, 2), (2, 3), (3, 5), (5, 8), and for all con-

secutive Fibonacci pairs. 

Now, the weights mentioned under the arrays from (2, 3), (3, 5), and 

(8, 13) are precisely the unshortened sequence of lTs and 2!s in the com-

positions of W (the weight) as laid out by our scheme in [4] . As each must 
end in a 1 = ax or a 2 = b19 to get the proper representation, we simply 

replace 1 in each case by n and let n- 1, 2, 3, ... . This is a wonder-

ful application of Wythoff pairs, Fibonacci representations, additive par-

titions of the positive integers, and the function En(m). 

Before we prove all of this, we need some results for WythoffTs pairs 

from [1] and [5]. For Wythofffs pairs (an, bn), 

abn+l - Hn
 = l a n d aan+i - aan = 2; (6.1) 

aan + 1 = bn. (6.2) 

Return to the weights given in the array induced by 3 and 5 in Table 

6.2. From (6.2), replacing n by ani we get immediately that 

Now, 
% + i = ^ » - <6-3) 

+ 1 = ba and an , = aa + 2 

from (6.1) rewritten as 

Thus 5 

a = an + 2. 
an+1 an 

K+ l = aaa + i = abn 

as required. 

We obtain 

"ah + 1 = Hn (6.4) 

by replacing n by bn in (6.2). These are all the weights appearing in 

Table 6.2. 

Now, we move to Table 6.3, the array induced by 5 and 8, and examine 

the weights. From (6.2), by replacing n by aa , we easily obtain 

aaa + 1 = Ka • 
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an + 2 = ba + 1 = an + 1 = ah . 

Next, again from (6.2) with n replaced by bn and then n replaced by a, , we 
have 

an + 1 = bh and n + 1 = ba . 

Again using (6.2), we can also write 

K + l = aaa +1 = % • 

This undoubtedly continues. 

To get our next line of weighted l?s, we simply add an to end each 1 

of weight 4, and take those of weight 5 together with these. All of the 

following are of weight 5: 

an ba ah ani bh aary ba, ahl 
°-aaan

 aaan
 baan

 a^an
 ban aabn ^n °^n 

The five on the left end in an, and came from adding an an to each 1 of 

weight 4; the three on the left ending in bn are of weight 5 already. 

To get the next five of weight 6 to the right, we add ah to the end 

of the weight 3 aa , ba , and ah , then add bn only to the weight 4 aa and 

bh of Table 6.2, to form 

aaa
 b ^ aha

 a n d aab, bbb-

Now, we would like to have 

From an + 1 = bh , we have 
aah + 2 = bb + 1 = aa 

(6.5) 

Now, ah + 1 = ah +1, so that 

a, + 1 = a, , n = an ^9 

Thus, a = a , establishing (6.5), 
a +i 

Finally, we write a complete proof based on (6.1) and (6.2). Notice 

that we have to show that the differences between successive columns are 
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always 1, except for the transition that comes between the columns headed 

by Fn_± and Fn_ ± + 1 in the array. Also, we need a rule for formuation. 

The rule of formation of one array from the preceding array is as fol-

lows: To get the array with Fn+1 columns, build up the left Fn_1 and the 

right Fn_2 columns of the array for Fn columns by extending the subscripts. 

Add an to the bottom of each subscript in the left part, copy down the 

right part next as is, and then copy down the old left part with bn added 

to the bottom to get the rew right part. 

Line 1 

Line 2 

Line 3 

Left Part 

^-dy, E>n 

ia„ b„ a i>n 

Line 4 aa b a, a bb 
aan CLn

 u&n Dn n 

Right Part 

by, 

aa ha-, ah 
aabn

 abn
 b 

From [4, p. 315], 2n+2 = . a and F 

n Z?Ts 

Now, the entries before the dashed line in Lines 1, 2, 3, and 4 above are 

alternately odd- and even-subscripted Fibonacci numbers, while the entries 

on the far right are the next higher Fibonacci numbers if we replace n by 
1. Thus, we have the sequence of representations in natural order. 

We show that the columns always differ by one within the left part and 

within the right part. We count each a subscript 1 and each b subscript 
2. Then the left part of Line 1 has weight 1 and the right part weight 2, 

and the left part of Line 2 has weight 2 and the right part has weight 3. 

The columns in the left part of Line 2 differ by 1 according to (6.2), 

aa + 1 K> 
which generalizes to 

an + 1 = b& (6.6) 
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for any An. Next, for Line 3, 

I 
Weight 3 Weight 4 

we have, from (6.2), 

K + 1 = a + 2 = a +1 = ab, 

and from (6.1) and (6.6), 

+ 1 = a„ + 2 = an _̂n = a^ , (6.7) 

so that 

aa + 1 = bb * 
bn

 n 

follows for An - bn* 
Now, for 

an bn a? a„ bh , a„ fc„ a, 
% a«n &aM a& n ^ I aab

 abn
 hbn 

I 
Weight 4 Weight 5 

note that all cases follow from earlier cases, except transition case #1, 

marked with an asterisk above: 

ab + 1 = aa . (6.8) 
an Dn 

But, ab + 1 = ab +1 = a +2 = aa = a . 

We now display all of one more case: 

a«a K % aah
 hba

 aaa \ % | &aa K ab a bb 
aan

 an an
 ban

 an abn °n Dnl uab
 ubn

 abn
 Dbn

 Dn 

Weight 5 Weight 6 

Note that all these columns differ by one within the left and right parts 

from earlier results, except transition case #2, marked with an asterisk 

above, 

K + 1 = a a > (6.9) 
which is proved as follows: 
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bh + 1 = an + 1 + 1 = an + 2 = a , = an 
Da b ab a7 + l aa 

n ari an bUn
 abn 

from (6.2) and (6.8), which was transition case #1 above. 

When we write the next line, our transition case will again be like 

#1, as 

ah + 1 = a0 , (6.10) 

proved from (6.1) and (6.9), which was transition case #2 above, as 

a, + 1 = a, = an . 

Next, the transition will again by like #2 above, 

h + l = a (6.11) 
an abn 

proved from transition case #1 given in (6.10): 

bhi_ + 1 = an + 2 = a = aa 
°bn

 ah^ ah-, + 1 aa 
a " ban

 bban
 a°-bn 

The proof is now complete, by the principle of mathematical induction. 

That is, if, for the earlier cases, each term of the sequence plus 1 is 

the next one to the right, then, from the formation rules and general re-

sult (6.1), we get that it holds for the next case, but we have to prove 

the transition cases, since we get the results for each left and right 

part separately. To get a new left section, we add an to the bottom of 

the old left section subscripts and use general result (6.7) and just copy 

down the right section as is, and these two parts are, separately, okay. 

The transition from left to right in the new left section is now proved in 

four cases by mathematical induction. The new right part, which is the 

former left part with bn added on the end, yields to general result (6.1). 

This completes the discussion. 

Suppose the line array, at some level, produces sequences whose ele-

ments cover the positive integers without overlap. Since an is added to 

the left portion to form the left part of the new left part and the bn is 

added to the left portion to form the new right part, these two pieces 
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cover all the integers together that we covered by the left part before, 

and the old right side is left intact, ao that the new line again covers 

the positive integers without overlap. 
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