
THE MATRICES OF FIBONACCI NUMBERS 

M. C. Er 
University of Wollongong, N.S.W. 2500, Australia 

(Submitted June 1982) 

1. INTRODUCTION 

In a recent paper, Kalman [3] derives many interesting properties of gen-
eralized Fibonacci numbers. In this paper, we take a different approach and 
derive some other interesting properties of matrices of generalized Fibonacci 
numbers. As an application of such properties, we construct an efficient algo-
rithm for computing matrices of generalized Fibonacci numbers. 

The topic of generalized Fibonacci sequences discussed here is related to 
the theory of polyphase sorting in an interesting way; in fact, it is used in 
optimizing the polyphase sort (see[l] and [7]). The theory of polyphase sort-
ing, in return, helps shape the construction of a fast algorithm for computing 
the order-fc Fibonacci numbers in 0(k2 log ri) steps (see [2] and [5]). 

2. DEFINITIONS 

Define k sequences of generalized order-fc Fibonacci numbers, for some k ^ 2, 
as follows: 

£ F?~\ for 1 < t < fc, (1) 

where F* is the nth Fibonacci number of the t sequence. We may arrange these 
k sequences in k columns extending to infinity in both directions. Define the 
window at level n, Wn , to be the k x k matrix of generalized Fibonacci numbers 
such that 

W (a?,), for 1 < i , 0 < k, (2) 

where a"̂  = Fj n-k + i 
A set of initial values of these k sequences, defined by (1), may be given 

by 
1, t = n + k 

, for 1 - k < n < 0. 
0, otherwise 

(3) 

In other words, W0 is the k x k identity matrix. 
By an application of (l)-(3), we deduce that 

Ft 1, for 1 < t < (4) 

In consequence, we have 

wl = 

0 
0 
0 
• 

0 
1 

1 
0 
0 
• 
0 
1 

0 . 
1 . 
0 . 
'• 

0 . 
1 . 

. 0 

. 0 

. 0 
; 

. 1 

. 1 

(5) 

131* [May 



THE MATRICES OF FIBONACCI NUMBERS 

To derive the nth Fibonacci number such that n < -k, we simply invert (1): 

Ft = Ftn + k - EV + *> for Kt<k. (6) 
i = l 

In this way, the k columns can be extended to infinity in both directions, 
starting from the identity matrix, WQ. 

3. SOME PROPERTIES 

By the definition of generalized order-fc Fibonacci numbers, we have 

Wn = VI^n_Y. (7) 

In other words, W± maybe viewed as a row operator as it shifts a window verti-
cally by one level. From (7), we derive 

Wn = WlW0 • (8) 

Since W0 = T, we have just derived 

K = ̂  - (9) 

Abbreviating W1 as W9 we may write Wn for W . 
As a consequence of (9), we have 

K = ̂ n - l = ̂ -1^1- (10) 

The above equation shows that matrix multiplication of windows is commutative. 
Indeed, {Wn \n £ Z} is an infinite cyclic group and satisfies the usual laws of 
exponents. 

From Wn = Wn_1W1, we obtain the following two equations relating elements 
of two adjacent rows; 

and 
pn = pn-l + Fn-19 fOT 2 < t <ks (11) 

Fl = F^~\ (12) 

Interestingly, these two equations are foundational to the basic theory of poly-
phase sorting [1], The nth row of Fibonacci numbers is precisely the so-called 
ideal distribution in the sorting context. 

More interestingly, the column and row recursions of windows can be inter-
preted as follows. Multiplying by W on the left of any window has the effect 
of rolling the window down, exposing a window at the next level. More generally, 
multiplying two windows at levels v and c9 respectively, may be viewed as roll-
ing the window at level o down by r levels, with the resulting window placed at 
level (r + o), i.e., 

W*+° = wrW°, (13) 

where v and o are any integers. In contrast, multiplying any window by W on 
the right has the effect of bringing the row recursion into play. If 

7? = \JPnTPn JP 
k-

1984] 135 



THE MATRICES OF FIBONACCI NUMBERS 

is the nth row of Fibonacci numbers (therefore, the last row of Wn)9 then the 
(n+ l)s t row, 

may be obtained by: 

a) shifting each element of Rn one position to the right (filling the va-
cant position with a zero and truncating the element, F/2, moved out of place); 

and 

b) adding the truncated element, F£9 to each entry. 

These two steps may be illustrated as follows: 

[Fl F* . . . F£] + [ 0 ? ; . . . ^ ] (*"*" dr° Ps o u t) 

We see, from the above discussions, that matrix W contains the mechanisms 
for computing (1), (11), and (12). Surprisingly, to compute generalized Fibo-
nacci numbers, (1) need not be used directly; instead, (11), (12), and (13) are 
used. 

k. APPLICATIONS 

As an application of the interesting properties of windows, discussed pre-
viously, we describe the construction of a fast algorithm for computing gener-
alized Fibonacci numbers. Paradoxically, when n is large, it is faster to 
compute the nth Fibonacci number by using the matrix method discussed in the 
previous two sections than by using (1) alone (see [2] and [5]). As shown in 
equation (13), it is possible to increase the exponent of W through matrix mul-
tiplication, by treating each window as a single entity. In hand calculation 
or in computer implementation, it is desired to keep v = a so that (1) only one 
kx k matrix needs to be maintained during the computation and (2) the destina-
tion level can be reached in the shortest time. 

Note that any positive integer n can be expressed in terms of the binary 
representation: 

n = Z *;2\ (15) 

where x^ = 0 or 1. Therefore, we may write 

wn = n w2\ (i6) 
Xi = 1 

If an algorithm starts with the window at level 1 and doubles the window level 
each time, then Wn can be reached in 0(log n) steps. However, this approach 
requires two matrix multiplications: one for matrix squaring, another for ac-
cumulating the result by applying (16) (see Urbanek's implementation [5]). We 
now give an algorithm for computing the generalized order-fc Fibonacci numbers, 
which is better than the algorithm given by Urbanek because it requires only 
one matrix multiplication per cycle. 

Note that (15) can be rewritten as follows: 

n = (...((1 * 2 + arJ-_1) *2 + x^_2) * 2...) * 2 + x0, (17) 

where J is the smallest positive integer such that n < 2J+ , and xi = 0 or 1. 

136 [May 



THE MATRICES OF FIBONACCI NUMBERS 

Consequently, we have 

^n _ ^(...((l*2 + fcJ--1)*2 + x7--2)*2...)*2+a:0 

= (...((W2*WX;i-1)2*WXj'-2)2*WXo. (18) 

For instance, 

W25 = rv7(((1*2 + 1 ) * 2 + 0 ) * 2 + ° ) * 2 + l 

= (((W2* W)2)2)2W. 

Equation (18) shows that, by working from the central parenthetical quantity 
outwards, Wn can be computed through successive steps requiring either matrix 
squaring or matrix squaring followed by multiplying by ft/. Fortunately, multi-
plying by W can be accomplished by applying (11) and (12) without the need of 
matrix multiplication. 

An efficient algorithm for implementing the ideas described above is best 
based on the following recursive expressions: 

( (Wn/2)2, n is even 
Wn = I 

{ (Wln/2])2W, n is odd, 
and 

W1 = W. 

The details of the algorithm are presented below using a programming notation 
commonly used in Computer Science (see [6]). Note that (n d iv 2) = [n/2\, and 
that A[1,] is row I of A. 

funct ion Fibonacci (n, k : integer) : integer; 

{Given n £ Z and k ^ 2, this function returns F£ as a result.} 

var A : k x k matrix; 

procedure Window (n : integer); 

{Compute W .} 

var R : 1 x k matrix; 

beg i n 

_i_f n = 1 then A := W"1 

else beg? n 

Window (n div 2); 

R : = A [ 1 J * A; {R = Wm[l J * Wm, m = n div 2} 
i f odd(n) then 

A[1 , ] := R * W1 { A [ 1 J = W2m[1,] * W} 
else A [1 , ] := R; { A [ 1 j = W2m[1 , ] } 
Compute rows 2 to k of A from previous rows 
end 

end {Window}; 

1984] 137 



THE MATRICES OF FIBONACCI NUMBERS 

begin 

i f n = 0 then return (1); 

jJL n < 0 then 

begin 

Window(-n) ; 

Inverse {inverse matrix A} 

end 

else Wi ndow (n); 

return (A[k,k]) 

end {Fibonacci}; 

The procedure "Window" is called recursively for achieving the effect of 
starting the computation from the innermost pair of brackets of (18). It halves 
the value of n per recursion, truncating the remainder for odd n, and terminates 
the recursion when n is reduced to 1. In the last recursive activation, matrix 
A is initialized to W1. Thus, the number of activations of Window is 0(log ri) . 
In contrast, a direct application of (1) takes 0(n) steps. 

Note that every row of a window satisfies (14). Therefore, in squaring a 
window, it is unnecessary to compute the value of every element of the result-
ing window by matrix multiplication (where a total of k3 multiplicative opera-
tions would be required). Instead, we compute the first row of the resulting 
window as i[l,] * A (see the procedure Window), and then compute the remaining 
rows by using (11) and (12). In this case, k2 multiplicative operations are 
needed for squaring a window. Note further that, if the level of a window is 
odd,a fine adjustment of the window by multiplying it by W is required. Again 
this operation can be carried out economically by using (11) and (12). If such 
an adjustment is required, it is more economical to carry it out immediately 
after A[l,] * A is computed than otherwise; hence, the test for odd(n), and 
R* W1 in the procedure Window. Thus, the total number of multiplicative opera-
tions per procedure call of Window is k2. 

Since the cost of computation of additions is negligible in comparing with 
that of multiplications, it is ignored in the calculation of cost. Thus, the 
overall running time of this algorithm is Q(k2 log ri) . In contrast, Urbanek's 
implementation [5] requires two matrix multiplications. Since the probability 
of carrying out the second matrix multiplication is 0.5, the overall running 
time for his algorithm is 0(1.5k2 log ri) , taking into account that matrix mul-
tiplications could be done in 0(k2) steps. Our algorithm thus runs 33% faster 
than Urbanek?s algorithm. Moreover, our algorithm supports the computation of 
-nth Fibonacci numbers, as seen in the procedure Fibonacci, which is not ad-
dressed in [2] and [5]. Alternatively, it is computationally faster by making 
procedure Window take the initial window as a second parameter. If n < 0, W"1 

is passed as a second parameter to Window; whereas, if n > 0, W is passed as 
a parameter. 

For an interesting application of the generalized order-?!: Fibonacci numbers 
to the polyphase sorting, the reader is referred to [1]. 

138 [May 



THE MATRICES OF FIBONACCI NUMBERS 

5. REMARKS 

The material presented here could easily be adapted to computing solutions 
of linear difference equations with constant coefficients [4]. This is left 
as an exercise for the interested reader. 

ACKNOWLEDGMENTS 

The author is indebted to the referee for his valuable comments, sugges-
tions, additional references and, especially, for improving the presentation of 
this paper. This research was supported by the RGC under Grant 05-143-105. 

REFERENCES 

1. M. C. Er & B. G. T. Lowden. "The Theory and Practice of Constructing an Op-
timal Polyphase Sort." Computer Journal 25 (1982):93-101. 

2. D. Gries & G. Levin. "Computing Fibonacci Numbers (and Similarly Defined 
Functions) in Log Time," Information Processing Letters 11 (1980):68-69. 

3. D. Kalman. "Generalized Fibonacci Numbers by Matrix Methods." The Fibo-
nacci Quarterly 20 (1982):73-76. 

4. K. A. Miller. Linear Difference Equations. New York: Benjamin, 1968. 
5. F. J. Urbanek. "An 0(log n) Algorithm for Computing the nth Element of the 

Solution of a Difference Equation." Information Processing Letters 11 
(1980):66-67. 

6. N. Wirth. Algorithms + Data Structures = Programs. Englewood Cliffs, N.J.: 
Prentice-Hall Inc., 1976. 

7. D.A. Zave. "Optimal Polyphase Sorting." SIAM J. Computing 6 (1977):l-39. 

1984] 139 


