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1. INTRODUCTION

Let {L,} be a sequence on integers defined as
Ly=2,L,=1,ad L, =1, ,+L, ,, for n 2= 2.

This is the famous Lucas sequence. In [1], Hoggatt and Bicknell proved that
Lp = L, (mod p) if p is a prime, together with its generalization Lj, = [y (mod
p). It is interesting to note that these properties are not lost in generali-
zation of the sequence. The purpose of this paper is to prove these results
for generalized Lucas integral sequences defined in §2 below. One more gener-—
alization of L, = L; (mod p) has also been proved. In light of these results,
the sequences given in [2] have been discussed.

2. DEFINITIONS

A generalized Lucas integral sequence of order m is defined as

L,=af +af + -+ + o], (2.1)

n
where o,, 0,, ..., O, are the roots of the equation
™ = g et + a4 e 4 oay, (2.2)
with integral coefficients and a, # O.
These I, 's are easily obtained in terms of the a;'s by Newton's well-known
formula:
Ly=m, L, =a,L, ,+a,L, ,+ -+ +a, L, +tna,, ifn=1,2,...,m-1,

§ (2.3)
L, =a.lL + a. L + e+ al for n 2 m.

n 17n-1 2%n-2 m~n-m?

Equation (2.2) is called the characteristic equation of (2.3).

3. MAIN RESULTS

First, we shall prove a lemma for each theorem. The monomial symmetric
functions

t t t
Yotat. ..,

where t,, t,, ..., t, are integers as defined in [3]. Equation (3.1), used in
the proofs of the lemmas, is given in [3].

Lemma 3.1

t'ﬂ.
n o

Let O, Oy +..s Op be the roots of (2.2). Then Y oltal?...ol, with dif-

ferent indices for a's, is an integer.
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Proof: We prove the lemma by mathematical induction on n. Since

|2 S 1 ty At
2ot =ayt tat b oeee ta

1
mo Ltl’

an integer, therefore, the lemma is true for n = 1. Suppose the lemma is true
for m = s - 1. As all the indices for a's are different, we have:

(Z:afl)<§: alzals ... a§i1>

= t1 yt2 te Lo+t t, te
> agtar ... oag F 2:@1 0,7 e.. 0 (3.1)
ty t3 1t ts e ty b3 to +t;
+ E:al o, ceeaf, + + 3 I SR e S

Using the induction hypothesis and the fact that 2:(xf1 is an integer, we find

that t
1., %2 t
z OLl OL2 PN OCSS

is an integer; i.e., the lemma is true for n = s. So, by induction, the lemma
is completely proved.

Theorem 3.1
Let {Ln} be a generalized Lucas integral sequence and p be a prime number.
Then
Ly, = Ly (mod p).

Proof: By using the multinomial theorem, we have

1
(ap +op 4+ -vr 4 o)’ = 2 ZE |p:_.

ailuzz co. ol (3.2)
1°Y2°

Tl

where ¢,, T3, ..., tp are nonnegative integers such that ¢, + ¢, + **+ + ¢, =p
and all indices of a's are different.
From (3.2), we have
p
(a, +a, + + o)

t, t tm

!
=QL€+0(,§+"'+OL§+Z'%1!—.F)T_OL O(.22 ees Oy (3.3)

Tal 1

with the above conditions on ¢;'s and no ¢; = p. With these conditions on the
t;'s, we have that

is an integral multiple of p. Since for each set of possible values of ¢, ¢,
os tp all Y d§1u§2 ... al"'s are integers, by our Lemma 3.1 we have, from

m
(3.3) and (2.1),
(5,)F = Lp + pX, where X is an integer.

Using Fermat's little theorem, we get
Lp =L, (mod p).
This completes the proof of Theorem 3.1.
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Lemma 3.2

Let 0,5 O , Op be the roots of (2.2). Then, for different indices of

s wee
a's, X (aj*al? ... a%)* is an integer for every positive integer k.

Proof: Simply write kt; for t; everywhere in the proof of Lemma 3.1.
Theorem 3.2

Let {L,} be a generalized Lucas integral sequence and p be a prime number.
Then, for every positive integer k,

Lpx = Lx (mod p).
Proof: (ak + ok + -+ + of)P

- Pk pk ... pk p! (ot ot tnyk
= ol + ol 4 + ol +Zt1!t2! e eyt e o’

;:T—%¥j—z;T is a multiple of p and ), (a;lugz... a’") 1is an integer for every
given set of values of ¢;, ..., t, by Lemma 3.2. Therefore,

(Lp)? = Lpx + pAy, where A, is an integer
or Lpx = L; (mod p), by Fermat's little theorem,

Lf = L, (mod p).
Lemma 3.3
Let oy, QO,, ..., @, be the roots of (2.2). Then, for different indices of
a's,

ty t2 tnKPT = t1 Nt taykpT Tl
T (@ftay? ... ol = X (afralr L..oalr) (mod p7).

Proof: We shall prove the lemma by induction on r. In order to prove the
lemma for r = 1, we have to prove

kD = tavk
T @fralr L..af)® = X (altalz ... al)® (mod p). (3.4)
The congruence (3.4) may be proved by induction on 7. Since

PINCHI IS W CIPL

Lt1kp - Ltk

mn

0 (mod p) (by Theorem 3.2),

T @)% (mod p). (3.5)

or

m

tiyk
2 (afh)"P
Therefore, (3.4) is true for m = 1. Consider the equation
tik ty ts Yk
(Eall p)(Z(Otlz%s e aft) p)
= ) (ailagz R0 LR D ) (af2+tla§3 ce a;il)kp

k t ty + ¢
+ 2:(a§za§3+tl ce.ab Pyr.ci v+ X (a12a§3 . a;_ll)kp-
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Using the induction hypothesis and (3.5), we have
(2 oLf”‘)(E (afzal* ... a:il)k>

_  t, toykp (b, +£1) ¢ te yK
_E(ocl az? ee.0t) + Z(ocl a, ...cxs_l)

+ 3 (ocfzoc;”tl RIS LS SRR ) (afzals ... afe i)k (mod p)

or

i

> (ocilotzz oc‘;’)kp > (oc:_;loc;fz .. afo)* (mod p).

This proves that (3.4) is true for n = s. Thus, induction completes the proof

of (3.4).
Next, we suppose that our lemma is true for r = g. That is,

t tn s _ t t tn s-1
PINCITICINUIIIA) AN DN C T S Lab L (mod p®)
or
kp® kpe _ kpe°? kpe~t
>\lp +oeee +2KPT 2 Alp +oeee 4+ g (mod p*®),
where g is the number of terms in the expansion of
t, T2 tn
2 oata,? ... ap
and each XA is the product of powers of the a's. Therefore,

OFF" 4o 425707 = O+ +a8TH7 (mod 71D

or
kps*t kps*t p! Hy (M, Ha | kps
}\1 +-..+>\q +ETU*—T——.—-:'T"—(>\1 )\_2 e Aq)p
1 q:
3 - kpse p! Uy 1 H, Ug \kps -1
=\ + +>\q +Zm—'(>\l )\2 e )\q) .
p!
Since is a multiple of p and

U1! e UQ!
oA B = oy L ST (mod p?)

by the induction hypothesis, we have

kps*l kps+l _ kp' kp‘
MNP 4 ey = A; o+ cee +Ag (mod p°tYH)
or
£, ot taykpetl £y ot tnykp®
X (@1t az? ... ay)f = ¥ @tag? ... al)P (mod p°th),

which shows that the lemma is true for » = s + 1. Thus, the lemma is proved
completely by induction.

Theorem 3.3

Let {L,} be a generalized Lucas integral sequence and p be a prime number.
Then, for positive integers k and r,

Lypr = Ly

xkpr = (mod p7).

pl”-l
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Proof: The proof will be given by induction on ». By Theorem 3.2,

This proves the theorem for » = 1.
Suppose that the theorem is true for » = ¢ - 1, i.e.,

Lype-r = Lype-2 (mod P,
which implies

p _ P
Lkp"‘l = Lkps-z (mOd ps). (3.6)
Now,
s -1 kp®-1 kp® s p! t tmkP°TH
- A L R e D e CLEI 1)
el Tyt
or
p _ ! ty t tmykp® 1
Lipe-1 = Lkps+—2: o tm!(al 02 el o) .
Similarly,

p p! ty t tmykp® 2
Lyps-2 = Lype-1 +E—"‘—(OL10L2 ce. ") .
kp kp tal ottt T2 m
On subtracting, we get

p p
Lipess = Lipe-z

=L

_ p! t taykpeTl oty tnykp® 2
pe = Dppe-i + 2 ey s ACHGIRERIL i) (@ .ooa™ 1.

!
Using (3.6), g—T—EQ——E—T is a multiple of p, and Lemma 3.3, we have
1.

m*

Lyps = Lype-r (mod p9),

which shows that the theorem is true for r = s. Therefore, the theorem is com-
pletely proved by induction.

Note: Theorem 3.3 is a generalization of our previous theorems. The beauty
of this theorem is that multiplying the index of each term of the difference

Lypr = Lygpr-1
by p produces one more factor p to the new difference. It is observed that
Lkp’ F3 Lkps-l (mod psfl)

in most of the cases. In some cases, there exist primes where this incongru-
ence relation fails. For example, we take the sequence

Ly=3,L,=1,L,=5,and L, =L, ; + 2L, , + L
Writing a few initial terms of the sequence,
3, 1, 5, 10, 21, 46, ...,
we find that there exist primes 2 and 3 such that

L2 = L1 (mod 4) and L3 =L, (mod 9).

ot 5 n-gs fOr 7 > 3.

L. SEQUENCES WHERE p]Lp FOR EVERY PRIME p

Sequences of this type have been considered in [2]. First, let us prove
the following simple theorem.
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Theorem 4.1

Let {I,} be a generalized Lucas integral sequence. Then, for every prime
D p[Lp <>, =0.

Proof: Suppose L, = 0. Therefore, by Theorem 3.1,
L, =0 (mod p), i.e., pILp for every prime p.
Conversely, suppose p|Lp for every prime p. We find, again from Theorem 3.1,
Ly = 0 (mod p) for every prime p.
This implies that L; = 0. Hence, the theorem is proved.

Note: In light of this theorem, we conclude that for making such sequences
we need L, = 0. Ensuring the right start as pointed out in [2] is not needed.
As a matter of fact, this right start is a consequence of L; = 0. Moreover, it
will be an appropriate place to point out a shortcoming in Lehmer's proof pre-
sented in [2]. He first takes integers x, y, 2, and ¢, and then allows x = q,
y =28, 2=7v, and ¢t = §, which are not integers because 0, B, Y, and § are the
roots of the characteristic equation ¥ = 22% + 2z + 1. Consequently, one can-
not argue that Fp(x, y, %, t) is an integer implies F,(a, B, Y, §) is also an
integer. In fact, Fp(a, B, Y, 6) is an integer, as we see in our Theorem 3.1,
with the help of Lemma 3.1.
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