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1. INTRODUCTION

Let the cycle indicator

t,\k Ly \Kn
Co(t) = Co(tys vy t,) = b %IT"?%T‘%‘T(TL> (77> > (1)

where the summation is over all nonnegative integral values of k

that k, + 2k, + +-- + nk, = n.
The exponential generating function of (,(¢) is (see [2, Ch. 4]:

12 v r e k, such

o n w T
exp uC = g, Cn(t)% = exp{Z T{Ziuk}’ Iul < 1. 2

n=0 k=1

Applying a Tauberian theorem [1, Th. 5, p. 447] to (2), we will be able to
derive a limiting expression of Cn(t)/n!, as 7 » o, under certain conditions.

2. A LIMIT THEOREM

Before we state and prove the main theorem, we shall prove the following
lemma, which will be useful in the sequel.

Lemma 1

If 1 &
Zkglt"+t’ 0<t< e,

and the sequence {tn}, n=1,2, ..., is monotonic, then the sequence

C, (%)
. s nm=1, 2, ...,

is monotonic for n > N, where N is a fixed number.

Proof: Using the well-known recurrence relation of the cycle indicator, wa

have:
i (D) 1 "
G A DT - GFDT 2 Mitinln(®
L e® (6,

P i Ry +n+1f2(n-1)!+"'+tn+1}‘ (3

Supposing that {¢,}, n» =1, 2, ..., is monotonic decreasing, equation (3)
is written:
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Cn+1(t) < 1 Cﬂ(t) +

) N O RN WA )
m+ D! “n+ 17t n+l nt ~w+1 n ° )

Since {¢,}, m =1, 2, ..., is bounded, equation (4) is bounded by

¢, (® . () c (&) ()

n+1 (N -+ 1> n+1 <
n+ D! nt 1) 7l °F mr D! n

for all n > N.

Theorem 1
1 n
If E’;;itk >~ t, as n > oo, 0 <t <o, then

1
(1 - w?

exp uC v Z}(l 1 t)’ as u t 1-, (5)

where [ is a slowly varying function at infinity.
Furthermore, equation (5) implies that
n-1 Ck(t) 1

(6)
& Tkl VTEFD

ntL(n), as n > o,

If, additiomally, {¢,}, » =1, 2, ..., is monotonic, then equation (5) is
equivalent to

c, (%) 1 .
" NO) n* L(n), as n + o, n
Proof: Using the relation
fi ut lo L for 0 <u<1l
ok E1T - ’
equation (2) is written
exp ul =-——l———; exp ii %;(tk -5, (8)
(1 - w) k=1

Letti
etting L( 1 ) _ > “op o g (9
T-u) ™ Py e "k ’

and making the substitutions

1
T~ and ., -t = Y
equation (9) is written
- 1VK Yy
L(x) = exp{kgl (1 - —a-c—) % },

which is a slowly varying function at infinity, according to [1, Cor. p. 2821,
So equation (5) has been proved. Now, applying Theorem 5 of [1, p. 447], we
get equation (6).
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Using Lemma 1 and the same Theorem we have that (5) is equivalent to (7).
Corollary 1
If }-f:t + ¢t and lis + 8
ny ny K ’
and the sequences {¢,}, {s,}, n =1, 2, ..., are monotonic, then

c, (T + 8) . 1
n! T'(t + s)

nt*e lL(n), as n > . (10)

Proof: Since the C,(#) is of the binomial type, we have:

C (t+8) = :\: (3)ce®rc, (. (11)

Applying equation (7) to (1l1), we get

c, (t + 3)

f S KLt - 00T - ) + 0G0, (- T, (12)

where o(k*™1, (n - k)°~') is such that

okt7t, (n-K°H
kt—l . (T’L _ k)s-l

uniformly in X and » as the min(k, n — k) - o.
Equation (12) is equivalent to

c (¢t + 8) ~ pt+e-1 22(m) 1 n_l(k)t-l(l _ZE)S_IL(n %) L<n( —%)>

n! T T(E)T(s) n n L(n) Le)

=

=0
k t-1 ( k).s—l
+ o((;) -5 . (13)
By the definition of slowly varying function at infinity, we have that

e )l - )

L(n)L(»n)

-~ 1 as n + o,
Thus, interpreting the sum in (13) as the approximation to a Riemann integral
as n > ©, we get

c,(t + s) pt+e-l ) 1 . .
o N THTE ¢ (”)fo @ (L - @)

or
c,(t + s) ptte-l
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where B(¢ + s) is the Beta function. Since it is well known that

T(t)T(s)

B(t, s) = Tt F8)°

equation (14) implies (10).
Corollary 2

If ¢, =t for k=1, 2, ..., 0< ¢t <1, then

n-1 Ck(t) 1

VTR M asn e : (15)

k=0
and

¢, () 1

VT (1o

s as n > o,

Proof: 1In this case, the exponential generating function of Cn(t, cees )
is written
exp uC = (1 - )¢t 17

as it is well known [2, p. 70].
Applying Theorem 5 [1, p. 447] to (17) we get (15), and since the sequence

C, (1)
7 ( n = 1, 2, coey
n:

is monotonic decreasing [2, (11), p. 71], relation (17) is equivalent to (16).

Remark 1: Concerning the same probability problem as that in [2, p. 71],
C,(¢)/n! is the generating function of certain probabilities.
Using equation (16), we can easily verify by differentiating that
u N log(n) + v, as n > o,
where y is Euler's constant and
g% v log m+ v+ £(2),

where 7(2) is the Riemann Zeta function which, in this special case, is equal to
m2/6. Both these results agree with those obtained in [2, p. 72].
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