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1. INTRODUCTION 

Let the cycle indicator 

( i ) 

where the summation is over all nonnegative integral values of k1, ..., kn such 
that fex + 2k2 + ••• + nkn = n. 

The exponential generating function of Cn(t) is (see [2, Ch. 4]: 

exp uC = E ?„(*);£ = exp|Z 1TW4> \u\ < l- (2) 

n = 0 n [k=1
 K ) 

Applying a Tauberian theorem [1, Th. 5, p. 447] to (2), we will be able to 
derive a limiting expression of Cn(t)ln\ , as n -> °°s under certain conditions. 

2. A LIMIT THEOREM 

Before we state and prove the main theorem, we shall prove the following 
lemma, which will be useful in the sequel. 

Lemma 1 

If 1 n 
-• £ .tk -> t , o < t < co, 

* - l ' * 

and the sequence {tn}» n = 1, 2, ..., is monotonic, then the sequence 

, n = 1, 2, ..., 

is monotonic for n > N9 where N is a fixed number. 

Proof: Using the well-known recurrence relation of the cycle indicator, we 
have: 

°n+l(t) 1 
(n + 1)! = (n + 1)! fe?0 (n)^ ̂fc + A -^(t) 

n + l ^ i n! + n + 1 p(n - 1)! + *'* + ^ + i r (3) 

Supposing that {tn}, n = 1, 2, ..., is monotonic decreasing, equation (3) 
is written: 
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(n + 1) ! w + \ t x n\ + n + 1 n! n + 1 nl ' (4) 

Since {tn}5 n = 1, 2, . .., is bounded, equation (4) is bounded by 

7—J_ n i < I—T-r) i— o r T-—, T\ , < j — for all n > N. 
(n + 1)! \n + 1/ n! (n + 1)! n! 

Theorem 1 

1 n 
If ~ 2 tk -+ t, as n -> a>, 0 < t < ooj then 

n * = i 

exp wC ̂  —L (i 7-)j as « t 1-, 
(1 - w)* Vl ~ */ 

(5) 

where L is a slowly varying function at infinity. 
Furthermore, equation (5) implies that 

If, additionally, {t„}, n = 1, 2, . .., is monotonic, then equation (5) is 
equivalent to 

°-{t) 1 t i 
n ! ^ Y7T)" n L ( n ) » as n -> ooe (7) 

Proof: Using the relation 

E X" = lo§ x _ u> for 0 < w < I, 

equation (2) is written 

Letting 

1 ( °°  u^ 
exp uC = — exp<̂  X T^k ' V 

(1 - uy (fe-i K 

and making the substitutions 

y — - = a? and tk - t = yk> 

equation (9) is written 

M-jij-i)'^ 
which is a slowly varying function at infinity, according to [1, Cor. p. 282]. 
So equation (5) has been proved. Now, applying Theorem 5 of [1, p. 447], we 
get equation (6). 
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Using Lemma 1 and the same Theorem we have that (5) is equivalent to (7). 

Corollary 1 

If -j n -j n 
n E*k "* t and n E sk -* s> n k = 1 n k = 1 

and the sequences {tn}9 {sn}, n = 1, 2, ..., are monotonic, then 

CM(t + s) 
n*"*"8" 1^), asn->». (10) n! T(t + s) 

Proof: Since the Cn(t) is of the binomial type, we have: 

Cn^ + «) - t (l)ck(t)Cn.k(s). (11) 
fe = 0 X / W 

Applying equation (7) to (11), we get 

C(t + s) 
^Yh)kt'lL(k)fhy(n • ^)S"lL(n -fc) + oft*'1* (n - ^r-1) , (i n: 

where oik*'1 , (n - ^)s-1) is such that 

^(fe*-1, (n - /c)5-1) : Q 

k*-1 - in - k)8-1 

uniformly in k and n as the min(/c, n - k) -* °°. 
Equation (12) is equivalent to 

2) 

C„(* + s) „*+ — i — iHn) Y vAkY-l(l k)S-lL(nn)M1-^)) 
(a) L (W) /- W W I1 n) L(n) L(n) r ( t )r ( 8 

By the definition of slowly varying function at infinity, we have that 

;(»§)4(>-t)) , 
— • , \r, N -> 1 as n -> oo„ L(n)L{nY 

Thus, interpreting the sum in (13) as the approximation to a Riemann integral 
as n -> <», we get 

Cn(t + s) t + a . i 

V(t)T(s 
y I,2(n) f xt'1a - x)s-1dx 

Cn(t + s) t + s . i 
»i " iferGO Mw)B(*' 8 ) ' ( u ) 
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where B(t + s) is the Beta function. Since it is well known that 

Bit s) - nm(s) 
equation (14) implies (10). 

Corollary 2 

If tk = t for k = 1, 2, ..., 0 < £ < 1, then 

ZQ-^T~^ T ( t + 1 } «', as n-^oo, ( 1 5 ) 

and 

n\ T(t) s a s e 

Proof: In this case, the exponential generating function of Cn(t, . .., t) 
is written 

exp uC = (1 - w)~* (17) 

as it is well known [2, p. 70], 
Applying Theorem 5 [1, p. 447] to (17) we get (15), and since the sequence 

, n = 1, 2S .. . , n! 

is monotonic decreasing [2, (11) , p. 71], relation (17) is equivalent to (16). 

Remark 1: Concerning the same probability problem as that in [2S p. 71], 
Cn(t)ln\ is the generating function of certain probabilities. 

Using equation (16), we can easily verify by differentiating that 

y ̂  log(n) + y, as n •> °°, 

where y is Eulerf s constant and 

a2 ^ log n + y + £(2), 
where £(2) is the Riemann Zeta function which, in this special case, is equal to 
7T2/6. Both these results agree with those obtained in [2, p. 72]. 
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