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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1 + Fn> Fo = ° s Fl = l 

and 
Ln + 2 = Ln+1 + L

n> L0 = 2> Ll = l e 

PROBLEMS PROPOSED SN THIS ISSUE 

B-532 Proposed by Herta T. Freitag, Roanoke, VA 

Find a, bs and o in terms of n so that 

a3(b - a) +bHo - a) + a3 (a - b) = 2FnFn + 1Fn + 2Fn+3. 

B~533 Proposed by Herta T. Freitag, Roanoke, VA 

Let g(a9 b, o) = ah(b2' - a2) + bh(c2 - a2) + ch (a2 - b2) . Determine an 
infinitude of choices for a, b$ and o such that g(a, bs c) is the product of 
five Fibonacci numbers. 

B-534 Proposed by A. B. Patelf V. S. Patel College of Arts & Sciences, 
Bilimora, India 

One obtains the lengths of the sides of a Pythagorean triangle by let-
ting 

a = u2 - v2
s b '=• 2uv, Q = u2 + v2

? 

where u and V are integers with u > V > 0* Prove that the area of such a tri-
angle is not a perfect square when u = Fn+1> V = Fn ,. and n > 29 

B-535 Proposed by L. Cseh <£ J-. Merenyi, Cluj, Romania 

Prove that there is no positive integer n for which 

^1 + F2 + ^3 + ••• + ^3n = 16!» 
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B-536 Proposed by L. Kuipers, Sierre, Switzerland 

Find all solutions in integers x and y of 

xh + 2xs + 2x2 + x + 1 = y2. 

B-537 Proposed by L. Kuipers, Sierre, Switzerland 

Find all solutions in integers x and y of 

x4 + 3x3 + 3#2 + ar + 1 = y2. 

SOLUTIONS 

Application of the Bertrand-Chebyshev Theorem 

B-508 Proposed by Philip L. Mana, Albuquerque, NM 

Find all n in {1, 2, 3, ..., 200} such that the sum n\ + (n + 1) ! of suc-
cessive factorials is the square of an integer. 

I. Solution by Paul S. Bruckman, Fair Oaks, CA 

Let 0n = n\ + (n + 1) ! = (n + 2)n!. We will show that n = 4 is the only 
integer n E {1, 2, 3, . .., 200} such that 9n is square. 

Proof: We easily verify that d1 = 3, 92 = 8, 63 = 30, while 9i> = 144 = 
122. If p < n < 2p - 3, where p is any odd prime, then p|6n but p2\§n\ hence, 
9n cannot be a square in this range. Also, if p and q are any two consecutive 
primes in the sequence of primes, with 5 < p < 103, it is easy to verify that 
7 < < 7 < 2 p - 3 < 203. Thus, the range {5, 6, 7, ..., 200} is spanned by at least 
one prime p with p|9n but with p2|9n; this shows that 9n is not square in this 
range. 

II. Solution by J. Suck, Essen, Germany 

n\ + (n + ! ) ! is a square only for n - 4 and a cube only for n - 2. 

Proof: Bertrandfs "postulate" as proved by Chebyshev states that for 
every integer k > 3, there is a prime p satisfying k < p < 2k - 2. (See, e.g., 
Hardy and Wright, An Introduction to the Theory of Numbers, 4th ed., p. 373.) 
Now, let n = 2w or 2m - 1, m > 2. We have a prime p then with m + 1 < p < 2m, 
so that p|n!. However, because 2p > 2m + 2 > n + 2, p2 is not a divisor of 
n!(n + 2) = n\ + (n + 1) ! . 

Also solved by L. Cseh, Walther Janous, Edwin M. Klein, L. Kuipers, Imre Mer-
enyi, J* M. Metzger, Bob Prielipp, Neville Robbins, Sahib Singh, M. Wachtel, 
and the proposer. 

Dedekind Function Inequality 

B-509 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Let ty be Dedekindfs function given by 

*(n) = n n (l + 1-). 
p\n \ P/ 
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For example, 

iK12) = 12(1 + 1 /2) (1 + 1/3) = 24. 
Show t h a t 

TKiKiKn))) > 2 n f o r n = l , 2, 3 , . . . . 

Solution by J. M. Metzger, University of N. Dakota, Grand Forks, ND 

The statement is false for n = 1. 

Since ipOK^K2))) = 6, the inequality is correct for n = 2. 

Now assume n > 3. For such n, i(i(n) is clearly even. Note that for all 
n > 25 ip(n) > n + 1 because i(/(n) is an integer greater than n. Moreover, if k 
is even, then 

<K*> 
It follows that 

* , l ( , + ? ) » * - ( , + * ) 3k 
2 ' 

*(*(*(«))) > § *(*(*)> > § •f*(n) >|(n + 1) > 2n. 
-Also solved 2?y Paul S. Bruckman, L. Cseh, Alberto Facchini, C. Georghiou, Wal-
ther Janous, L. Kuipers, J. Merenyi, Lawrence Somer, J. Suck, and the proposer. 

Inequality on Euler and Dedektnd Functions 

B-510 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

EulerTs (j) function and its companion, Dedekind's if/ function, are defined 
by 

cf)(n) = n n (l - ̂ ) and ij/(n) = w II U + ^) 
p|n \ P/ p|n V P/ 

(a) Show that (f>(n) + ip(n) > 2n for n > 1. 
(b) When is the inequality strict? 

Solution by Alberto Facchini, University of Udine, Italy 

Let p , ..., p be the prime factors of n. Then, 

n ( i ± M - i ±(-i-+ . . . + - U 

\ P i P 2 P1P3 

± ( _ i _ + . . . ) 
\P1P2P3 / 

> .-

+ _^. + _L_+. 
PiPt P2P3 

,t L + (tl)1 

Therefore, 
'if 2 

if) 
> 2n 

and the inequality is strict if and only if n has at least two distinct prime 
factors. 
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Also solved by Paul S. Bruckman, L. Cseh, C. Georghiou, Walther Janous, L. Kui-
pers, Vania D. Mascloni, I . Merenyi , J. Af. Metzger, Bob Prielipp, H.-J'. Seiffert, 
Sahib Singh, Lawrence Somer, J. Suck, and the proposer„ 

Telescoping Fibonacci Products 

B-511 Proposed by Larry Taylor, Rego Park, NY 

Let j , fc, and n be integers with j even. Prove that 

Fj (Fn + Fn + 2j + Fn + hj + • • • + F
n + 2jk^ = (^n+2jk+j ~ £ n - j ) / 5 . 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We s h a l l show t h a t 

5FnFj + 5Fn + 2jFj + 5Fn + hjFj + 5F n + 6 j -Fy + - . . « + . 5F„+ ( 2 / c> 2 ) j ^ / + ^Fn + 2jkFj 

= ^n + (2fe+l)j ~ L n - j » 

which is clearly equivalent to the desired result. From (12) on p. 115 of the 
April 1975 issue of this journal, 

5F8Ft = LS+t ~ LS-t> * e V e i l » 

Thus, since j is even, 

5FnFd + 5Fn + 2.F. + 5F^,F. + 5Fn+6j.F, + ... + 5Fn + (2k_2).F. + 5*n+ 2 .^. 

= ( L n+j " L n - j ) + (Ln+3j " L
n + P + ( L n+5j " Ln + 3j) + (Ln + 7j ~ L n+5j ) 

+ • • • + (^n + (2fe-i)t7- ~ ^n+(2fc-3)P + ^n+(2k + l ) j ~ ^n + (2k- l ) j^ 

^n+(2k+l)j ~ ^ n - j 

because telescoping occurs. 

Also solved by Paul S. Bruckman, L. Cseh, Herta T. Freitag, C» Georghiou, Wal-
ther Janous, L. Kuipers, J. Merenyi, H.-J. Seiffert, A. G. Shannon, J. Suck, 
Sahib Singh, and the proposer. 

Telescoping Fibonacci-Lucas Products 

B-512 Proposed by Larry Taylor, Rego Park, NY 

Let j, fc, and n be integers with j odd. Prove that 

^J ^ n + Fn+2j + Fn+hj + ' • • + Fn+2kj-) = £n+2kj+j " Fn-j° 

Solution by J. Suck, Essen, Germany 

Do not use induction. Just telescope the left-hand side by Hoggattfs T23: 

LJF» = Fm+j ~ Fm-j> 0 Odd. 
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Also solved by Paul S. Bruckman, L. Cseh, Herta T. Freitag, C. Georghiou, Wal-
ther Janous, L. Kuipers, I. Merenyi, Bob Prielipp, tf.-J. Seiffert, A. G. Shannon, 
Sahib Singhf and the proposer. 

Fibonacci Convolution and Rising Pascal Diagonals 

B-513 Proposed by Andreas N. Philippou, University of Patras, Greece 

Show that 

tnFk + 1Fn + 1_k = if (n + 1 - k)(n " k) torn = 0, 1, .... 

where [x] denotes the greatest integer in x. 

Solution by C. Georghiou, University of Patras, Greece 

Since the generating function of the sequence {Fn+1} is 

fix) - (1 - x - X 2 ) " 1 , 

it follows that 

00 n 

E £ Fk+lFn+l-kX* = (1 - * ~ X2)"2 

n=0 k = 0 

-x:0(-i)"(;2)(* + - 2 ) ' . \'\<h 

= E (n + l)(x + a;2)" 
« - 0 

= £ z y + * + Dp'tV+ 2 1 
n = 0 j + k = n \ «. / 

= E E (i+ fc + "P"**)*" 
n = 0 j + 2k = n \ «. / 

[n/2] ^ ' T,V 

= E E (n +1 - * ) ( * ) * " 
from which the assertion is established. 

Also solved by Paul S. Bruckman, L. Cseh, Walther Janous, L. Kuipers, ff.-J. 
Seiffert, A. G. Shannon, J. Suck, and the proposer. 

• 0^04 
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