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1. INTRODUCTION 

Polygonal numbers received their name from their standard geometric reali-
zation. In this geometric realization one considers sequences of regular poly-
gons that share a common angle and have points at equal distances along each 
side. The total number of points on a sequence of the regular polygons is a 
sequence of polygonal numbers. For example (see Fig. 1), if the polygon is a 
triangle, we get the triangular numbers 1, 3, 6, 10, 15, ..., and if the poly-
gon is a pentagon, we get the pentagonal numbers 1, 5, 12, 22, 35, .... More 
information on the polygonal numbers may be found in L. E. Dickson1s History of 
Number Theory [4, Vol. II, Ch. 1]. We also recommend the discussion of "figu-
rirte oder vieleckigte Zahlen" by L. Euler [5, p. 159]. 
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FIGURE 1 

In this paper we describe an order-theoretic realization of the polygonal 
numbers. We represent the polygonal numbers as the cardinalities of sequences 
of modular lattices that can be glued together from simple building blocks. 
The construction of these lattices is described in the first part of §3, the 
main result is formulated in Theorem 3.3. It is interesting to note that, in 
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the case of the triangular numbers and of the square numbers , the diagrams in 
our lattice-theoretic representation (Figure 3 and Figure 4) look just like the 
usual illustrations in the standard geometric realization. For all other poly-
gonal numbers, however, the diagrams are very different. 

In §2 we introduce some essential terminology and necessary facts about 
function lattices. For a more complete treatment of these topics, we refer the 
reader to the standard textbooks [1], [2], [6], and to [3]. 

2. FUNCTION LATTICES 

Let P and Q be partially ordered sets. A mapping f:P -> Q is order-preserv-
ing if x < y in P implies f(x) < f(y) in Q for all x> y G P. An order-isomor-
phism is a mapping / that is one-to-one, onto, and has the property that x 4 y 
in P if and only if f{x) < f(y) in Qs for all x9 y G P. The set Qp of all the 
order-preserving mappings from P to Q can be partially ordered by f K g if and 
only if f(x) ^ g(x) for all x G P. If f, g G Qp

3 then the supremum of / and g9 
f v g, exists in Qp if and only if the supremum of f(x) and g(x) exists in Q 
for all x G P, and (/ v g) (x) = f(x) v cK#) . Since the same is true for the 
infimum of / and g, it follows that § p is a lattice whenever Q is a lattice, P 
may be an arbitrary partially ordered set. It can be shown that the function 
lattice Qp Is a distributive or modular lattice provided that Q is a distribu-
tive or modular lattice, respectively. 

For integers n ^ O , n= {1, 2, ..., n} denotes the totally ordered chain of 
n elements ordered in their natural order, ^the empty chain, and m- the dis-
tributive function lattice of order-preserving mappings from the n-element 
chain n into the ̂ -element chain m. M(n) is the modular lattice of length 2 
with n atoms, M(0) = 2, M(l) = 3. 

M(2) MO) 
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M(n) 

FIGURE 2 

An element a In a lattice is join-irreducible if a = b vc implies a = b or 
a = o; it is meet-irreducible if a - b A O implies a = b or a = c. A doubly 
irreducible element is an element which is both join- and meet-irreducible. 
Chains of doubly irreducible elements will play an important role in the con-
struction in 3. As examples we shall now determine the sequences of function 
lattices J3~ = M(l)~ (Fig- 3) and M(2)% (Fig. 4) for n > 0. In 2~> the doubly 
irreducible elements are circled where the function fin -> 3^ is represented by 
its image vector, i.e., 1223 stands for the function fih_ •+ _3 given by f(l) = 1, 
f{2) = /(3) = 2, and /(4) = 3. 

Obviously, the cardinalities of the lattices in Figure 3 are the triangu-
lar numbers, the cardinalities of the lattices in Figure 4 are the square num-
bers. This, of course, raises the question: Is it possible to represent all 
polygonal numbers as function lattices? 
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3. MODULAR PADDLEWHEELS AND POLYGONAL NUMBERS 

Let C = {GQ < c2 < • • • < <2n} be a chain and let Li9 1 < £ < k, be partially 
ordered sets with least and largest elements, z± and e± , which admit order-
isomorphisms (J) :C -> Li into L.̂  so that •<))•£ (co) = 2^ and (f)̂ (en) = e^ for each £. 
On the disjoint union of the Li9 1 < i < fc, we define a relation i? by (a:, z/) E i? 
if and only if 

(f)T1(̂ ) = (f)""-1 )̂ for some i and j, or x = y. 

R is an equivalence relation and the factorization of UlL^ 11 ̂  £ < A:} with re-
spect to this equivalence relation, denoted by M = M(Ll9 . .., L^\ C), is a par-
tially ordered set where the order of each piece Li is the given order, and if 
x G L - and y E Lj, £ ^ j, then x ^M y if and only if there is 0 < s < n so that 
a? < (J).(cs) and (j).(cs) < z/. Moreover, if we let 

then either 

min{t|a: < (j>̂ (ct) and y < (j^-O^)}, 

and 2/ ̂  ^jiom_1) 

and z/ £ $j(cm-i) 

and 2/ < *,-(^. 1). 

In the first case, x vM y = (f)̂ (cm) holds. In the second case, any common upper 
bound z £. M of••# and 2/ such that s ^ §i(cm) is in the piece Ẑ -; hence, x vM y 
exists in the piece Lj if L-j has suprema. In the third case, x vM y exists in 
Li if suprema exist in L^. Of course x AM y behaves in a similar way. There-
fore, M = M(L19 ..., Lk; C) is a lattice whenever each Li is a lattice. 

We will use this construction only in the case where L^ = Lj and (j)̂  = ((>•, 
for all £ and j, and we indicate that we have k copies of the same lattice L in 
the abbreviated notation M = M(k(L); C), 

If all Li = L9 a three-dimensional illustration of M(k(L); C) looks like a 
paddlewheel with k paddles, with the chain C as the vertical axis, and the k 
copies of the lattice L as the paddles, equally spaced around a circle and 
glued to the chain C by the mappings <J) = (j)̂ , for all 1 ̂  £ ̂  k. 
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As an example, let 

FIGURE 5 

We want to construct Af(4(L); 3). _3- contains an order-isomorphic copy of 3_9 
namely, a three-element chain of doubly irreducible elements, circled in the 
diagram above. Four copies of L axe glued to this chain and we get 

/ x /< \r\A-

V 
FIGURE 6 

The following theorem will show that this lattice is M(4)-. The proof of the 
theorem requires some knowledge of the irreducible elements in 3_-. 

Every function f:n_ -> m_ is piecewise constant and may be written as an in-
creasing tuple of m values. A convenient notation is 

1^2 k 2 ... mk™ 

with ki ^ 0, 1 < i < ???, and k1 + • • • + km = n, where the exponents ki count the 
number of occurrences of the value i for the function f(x) = i if and only if 

k1 + ••• + ki_1 < x < k1 + • • • + kt, 
Now, there are two types of doubly irreducible elements in m-s the constant 
mappings where k^ = n for exactly one i, and kj = 0 for all j' ̂  i, and those 
whose only values are the extremal elements of w. The latter are of the form 

lklmkn
9 where ki = 0 for all 1 < i < m. 

The constant mappings obviously form a chain of m elements in m-. For the 
second type of doubly irreducible elements, we have k± + km - n% hence, the 
possibilites km = 0,1, ..., n, and therefore these doubly irreducible elements 
form a chain of n + 1 elements in m-. This is the chain that we want to use 
for our paddlewheel construction. So in Theorem 3.1, n ® Ĵ  may be interpreted 
as the chain of these doubly irreducible elements in 3_-» with (j>:n. ® 1_ "** 3p- the 
identity mapping. 
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Theorem 3«1 

M = M(k(3_-); n®l) is the modular lattice M(k)~, f or k > 1, n > 0. 

Proof: An element in 3r- may be represented as zau®ey, where a + (3 + Y = n, 
0 ^ a, 3) Y ^ n> anc* where z < u < e is the chain 2» Similarly, we represent 
elements in M as (zau®ey)<c for 1 < i < fc, where the index i indicates that the 
element is in the ith of the k copies of _3~. Elements in M(k)~ are of the form 
zvQvet, where p + r + t = n, 0 < p, p, t < n, and j is the j t h of the k atoms 
of M(k). 

We now define a mapping \ptM -> M(k)~ by 

Should (zCLu^ey)i be in the chain n_ ® _1_ of Af, i.e., •£ is not uniquely determined, 
then it is doubly irreducible with 3 = 0 and its image under ip is then of the 
form zaey with a + y = n; in other words, it is independent of i . ip is thus 
well defined, and it is rather straightforward to show that ty is an order-iso-
morphism. H 

Note that for k = 1 we have 

M(l(3_~); n®l) ^ 2 " (see Fig. 3), 

and for k = 2 we have 

M(2(2~); n 0 D ^M(2)^. 

In the latter case, the two copies of _3- are glued together so that we get a 
planar diagram symmetric on its vertical axis (see Fig. 4). This representa-
tion theorem provides a procedure to calculate \M{k)~ \, the number of elements 
of M(k) , from the number of elements in 3_-. But 

tfi-(;:2)-
which can be easily verified by induction on n. 

Theorem 3«2 
|M(&)-| = (k • y + l) • (n + 1) for all n, fc > 0. 

Proof: For k = 0, |M(0)-| = |2~| = n + 1. In all other cases, it follows 
from the representation in Theorem 3.1, 

Mik)~ = M(k(3-); nei), 
that \M(k)~\ = k* |2"| " (k - 1) • (n + 1). Since 

we get 

|M(W~| = fc- (n +' 2 ) - (fe - 1)•• (n + 1) = (k-J + l) • (n + 1.). • 

It is now easy to see that the numbers Pnj^ = | M(k)-\ also satisfy the re-
cursion formula 

Pn.k " P«,fc-1 + Pn-l,l f o r W' k> 0 
P „ = n + 1 for n ^ 0 
n, 0 

P0t k = 1 for fc > 0. 
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However, this recursion defines the polygonal numbers [4, Vol. IIs Ch. 1], So 
we find that the modular lattices M(k)^ are order-theoretic realizations of the 
polygonal numbers. 

Theorem 3«3 

The cardinalities of the sequence of modular lattices M(k)- for increasing 
n ^ 0 and for k ^ 0 are the polygonal numbers. 

To illustrate the connection between |M(/c)~| and polygonal numbers, we list 
them in the following table for n, k < 5. For example, the horizontal line 
with entry k = 3 contains, from left to right, the numbers 

1 = |M(3)^|, 5 = \M(3)k\, 12 iMO)1 etc. 

These are the pentagonal numbers, listed in [7] as sequence number 1562. 

^S^j 
0 j 
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! 2 
3 

1 4 
! 5 
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1 3 
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22 
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5 
15 
25 
35 
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5 

6 
21 
36 
51 
66 
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Name 

natural numbers 
triangular numbers 
squares 
pentagonal numbers 
hexagonal numbers 
heptagonal numbers 

Sloan Number 

# 173 
# 1002 
# 1350 
# 1562 
# 1705 
# 1826 
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