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1. INTRODUCTION

In 1929, T. A. Pierce discussed an algorithm for expanding real numbers
x € (0, 1) in the form

=21 41 (1)
ax aa; A1A2a3

where the g; form a strictly increasing sequence of positive integers.

He showed that these expansions (which we call Plerce expansions) are es-
sentially unique. The Pierce expansion for x terminates if and only if x is
rational. See [3] and [5] for details.

In this note, we give formulas for the a; in the case where

c - Ve? - 4

X = 2

and ¢ 2 3 is an integer. For these numbers, Pierce expansions provide extreme-
ly rapidly converging series.

I1. FINDING REAL ROOTS OF POLYNOMIALS

To save space, we sill sometimes write equation (1) in the form
x = {ay, as, azs -..1,

where the braces denote a Pierce expansion.
Let

_l * o 0
pl(x) = b,x" + bn_lx” + + blx + b0

be a polynomial with integer coefficients and a single real zero o in the in-
terval (0, 1). We want to find the first term in the Pierce expansion of o.
From equation (1) it is easy to see that a, = [1/a]. Consider the polynomial
q,(x) = x"p,(1/x); this is a polynomial with integer coefficients that has 1/a
as a zero. Through a simple binary search procedure, it is easy to find d,
such that

sign(q,(d,)) = sign(q,(d, + 1));

this shows that d, = |1/a| and so we can take a; = d;.
Now consider the polynomial

1 -z
a2 = air(L2),

This ﬁgain is a polynomial with integer coefficients. It is easily verified
that if B is a zero of p,(x), then
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so
1
=Lt -1 4.
a, a,a,

By repeating this procedure on the polynomial p,(x), we generate the coef-
ficient a, in the Pierce expansion of o, and by continuing in the same fashion,
we can generate as many terms of the Pierce expansion for o as desired:

1
o = — = 1 4+ e

a; 4,4,

Now let us specify our polynomial to be
p(x) =x2-cx+1,

where ¢ 2 3 is an integer. Let o be the smaller positive zero, so
o= —m (2)

Now g;(x) = z’p,(1/x) = xz* - cx + 1. We find g,(c - 1) = 2 - ¢, which is
negative, and g;(¢) = 1, which is positive. Hence, we see that g, = ¢ - 1.

Now
_ 2, (1 = x)\,
p,(x) = (¢ - 1) p1<c — 1>,
hence,
p,(x) =2+ (¢> -c - Dx+ 2 - c.
We find

q,@) =x’p,(1/x) = (2 - e)az® + (¢* - ¢ - Da + 1.

Now q,(c + 1) =1, which is positive; but g,(c + 2) =5 - e?, which is nega-
tive. Hence, we see that g, = ¢ + 1.
Now

1 -x
P, = 2%, (5 1)
50 we see
py(x) = x% - (c® - 3e)x + 1.
So far we have been following the algorithm. But now we notice that p, (x)

is essentially just p,(x) with ¢® - 3c playing the role of c¢. We have found

1 1 . 1
c-1 (-D+D " c-D+Dn I»

where y is the root of z2 - (¢® - 3¢)xz + 1 = 0. By continuing this process, we
get:

o =

Theorem

Let o be as in equation (2). Then,
a="{cy-1,cy+1, ¢, -1,¢c,+1,¢,-1,¢c,+1, veols
where ¢y = ¢, Cpy1 = cz - 3cy-
For example, let ¢ = 3. Then we find

3 -5

> = {2, 4, 17, 19, 5777, 5779, ...}.
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Another example: let ¢ = 6. Then, after some manipulation, we find
V2 -1 =1{2, 5, 7, 197, 199, 7761797, 7761799, ...}.

Ironically, both Pierce [3] and Salzer [4] gave the first four terms of this
expansion, but apparently neither detected the general pattern!

I11. THE COEFFICIENTS c,

The recurrence cy,, = 02 - 3¢, is an interesting one which has been pre-
viously studied ([l], [2]). Some brief comments are in order.
If we let 0 and B be the roots of the quadratic

22 -cx+1=0,
with o < B, and define
A
R

]

V(n) = a® + B"; U

then it is easy to show by induction that

Vin) =cV(n - 1) - Vin - 2); U)

]

eU(in - 1) - Un - 2),
where

1]

v(0) =2, V(1) = ¢; UO) =0, U(1) = 1.

We can also show that V(3k) = V(k)® - 3V(k); hence, by induction, ey = V(3k).
This gives the following closed form for the Cpt

o = (c + Ve? - 4)3k + (c - Vo2 - 4)“
o\ 2 - 2 ) -

Similarly, it can be shown by induction that

Uk -1 _

-l,e,+1l,c, -1l,e, +1, vy e, . =1, ¢ . +1}. (3)
U35 0 0 1 1 k-1 k-1
Here is a sketch of the induction step. Assuming (3) holds, we find
{eg -1, e0+41, ¢, -1, ¢, +1, ..., e = L, e + 1}
_UE - 1 ( 1 1 )
U(37<) U(3k) Cr ~ 1 (Gk - 1) (Ck + 1)
_uGk-1n 1 Cx
U(3%) Uk e -1
_uEk - sk -1 + sk )

U@3k) (r(3k)2 - 1)

Now, using the fact that
U@3n) = Uny(Vin)? - 1)
and
UBBn - 1) =Umn - 1)Wm)?2 - 1) + V(n),

we see that the right side of (4) equals

U(3k+l _ 1)

U(3k+ l)
which completes the induction step.
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Equation (3) gives us an alternative proof of our Theorem above. By let-
ting k + «, we see that

ko_
-1l,ec, +1, ...} = lim-gié————kl =1

{c, -1, c
0 1 1 re (35 B

0 +1, c = Q.
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