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PROBLEMS PROPOSED IN THIS ISSUE 

H-381 Proposed by Dejan M, Petkovic, Nis, Yugoslavia 

Let N be the s e t of a l l n a t u r a l numbers and l e t m E N. Show t h a t 

/ \mT72m-2f n m-1 , v £ - 2 i - 2 

(i) «m - 2) - <-> ^ _ <g - *> + E2 - j i f e y y «** - 2i), " > 2. 
m-1 / s i — 2 i 

( i i ) 3(2m - 1) - E , 2 A , . , , • S(2m - 2i - 1 ) , rn > 2, 

( i i i ) 5(2TTZ) = - ^ E o A ; — s 3(2^ - 2i - 1 ) , m > 1, 
^ 22m - 1 £ = o 2 ^ + 1 ( 2 i + 1 ) ! 

where 

C(^) = S n _ W5 m > 29 a r e Riemann z e t a numbers 

and 
B(m) - E ( - ) " " 1 ( 2 n - l ) " " , m > 1. 

» - i 

H-382 Proposed by Andreas N. Philippou, Patras, Greece 

For each fixed positive integer k, define the sequence of polynomials 

^ V P > = E ( " ; ; • ; : . : « i ) ( L f £ ) B l + " + " s <» > °. - < p <->. ( i ) 

where the summation is taken over all nonnegative integers n1, . . ., nfe such that 
n-L + 2n2 + "• + knk = n + 1. Show that 

^ ( p ) < (1 - p)p'(n+1)(l - p f c ) ^ (n > k - 1, 0 < p < 1), (2) 

where [n/k] denotes the greatest integer in (n/k). 
It may be noted that (2) reduces to 

F*U2"(*£±)lnm (n**-l> (3) 
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and 
Fn < 2"(3/4)[n/2] (n > 1), (4) 

where {F„ }^ = o and {-^^ = 0 denote the Fibonacci sequence of order k and the 
usual Fibonacci sequence, respectively, if p = 1/2 and p = 1/2, /c = 2. 

References 

1. J. A. Fuchs. Problem B-39. The Fibonacci Quarterly 2, no. 2 (1964):154. 
2. A. N. Philippou. Problem H-322. 2fe Fibonacci Quarterly 19, no. 1 (1981): 

93. 

H-383 Proposed by Clark Kimherling, Evansville, IN 

For any x > 0, let 

1 n 
cx = 1, c2 = x, and cn = - 2 X ^ for n = 3, 4, ... . 

n i = 1 

Prove or disprove that there exists y > 0 such that lim z/"cn = 1. 

H-384 Proposed by Heinz-Jurgen Seiffert, Berlin, Germany 

Show that for n = 0, 1, 2, ..., 

* 1 fc-i 

fe = 0 (2^) !J=0 

\2 
J2 2 E 2n+ 1 

SOLUTIONS 

Waiting Again 

H-358 Proposed by Andreas N. Philippou, University of Patras, Greece 
(Vol. 21, no. 3, August, 1983) 

For any fixed integers k ^ 1 and r ^ 1, set 

f«) = y fni + ••• + nk + r - i\ n > 0 
•T̂ i.r Z- U ... , „ r - ij' n " u' 

where the summation is over all nonnegative integers n19 ..., nk satisfying the 
relation nx + 2n2 + * * * + knk = n. Show that 

£ Cf <*> /2n) = 2r*. 

You may note that the present problem reduces to H-322(c) f or r = 1 (and k > 2), 
because of Theorem 2.1 of Philippou and Muwafi [1]. In addition, the present 
problem includes as special cases [for k = 1, r = 1, and k = 1, r (^1)] the 
following infinite sums; namely, 

Reference 
£<l/2») =2 and t \(n + r " 1)/2^1 - 2'. 
n-o n-o Lv n / J 

1. A. N. Philippou & A. A. Muwafi. "Waiting for the kth Consecutive Success 
and the Fibonacci Sequence of Order K." The Fibonacci Quarterly 20, no. 1 
(1982):28-32. 
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Solution by the proposer 

S e t 

.p(k) , . _ ^ (ni + - • + nP + r - l\ / l - p\ni + "- + ^k 

nx, 2n2 .+ • • • + fcnfc =n 
(n > 0 , -oo < p < oo). 

I t f o l l o w s , by means of t h e t r a n s f o r m a t i o n n^ = mi ( 1 < £ < fc) and 

k 
n = m + Y* ^ - l)mi9 

i - 1 
t h a t 

n = 0 
, n + ... + n 

n = 0 

= y V h i + • • • + «fc + r - l \ / n x + • • - + n , \ / l - p \ ^ + -
n = o w^.Tf, » k 9 \ « i + • " + " f c A n i > • • • > nk) \ V I 

rt]_, 2n2 + • • • + /cnk =?7 

= ^ Im + r - 1 \ / 1 - p \ w
 v / m \ « + 2m2+ • . . + hnk 

- o \ m )[ p ) ni92.tnkB[m19 . . . , m J P 
^! + • •. +mk = m 

00 /™ -i- VJ _ l\/l — pX"7 

= X) ( )( ) (p + p2 + ' ' ° + pk)m , by the multinomial theorem, 

= E ("^(rV1 " Pfc>m = (1 " (1 " Pk))~\ for |1 - pk\ < 1, 
m = 0 V m ' 

by the binomial theorem, 
= p~kr , for k odd and 0 < p < \/2~, or Zc even and - ^fl < p < $2. (2) 

For p = 1/2, (1) and (2) establish the problem. For r = 1, (1) and (2) show 
H-348. 

Also solved by Paul 5. Bruckman* 

Zetanacci 

H-359 Proposed by Paul S. Bruckman, Carmlchael, CA 
(Vo2. .22, 210. 3, August 1983) 

Define the "Zetanacci" numbers Z(n) as follows: 

Z(n) = I! F +., n = 1, 2, 3, ... [with Z(l) = 1]. (1) 
P'\\n 

For example, Z(n) = 1, n = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, . ..; Z(n) = 2, 
n = 4, 9, 12, 18, 20, ...; Z(8) = 3, Z(16) = 5), Z(135,000) = Z(233351+) = 45, and 
so forth. 

(A) Show that the (Dirichlet) generating function of the Zetanacci numbers is 
given by: 

E Z(n)n-S = 0 (1 - p~s - p~2s)'\ 

1985] 91 



ADVANCED PROBLEMS AND SOLUTIONS 

(B) Show t h a t 

Fl (1 - p~s - p " 2 s ) = £) M(PM) • |y (n /P(n)) | • n~s , 
P n = i 

where y is the Mobius function and 

P(n) = II P [with P(l) = 1]. 

Solution by C. Georghiou, University of Patras, Greece 

The solution of the problem is based on the following known proposition 
[see, e.g., G. Polya & G. Szego, Problems and Theorems in Analysis II (Springer-
Verlag, 1976), pp. 121, 312]: 

"Let f(n) be a multiplicative arithmetical function (m.a.f.). Then we 
have 

E f(n)n~s = 0(1 + f(p)p~s + f(p2)p~2s + f(p3)p-3s + •••) (*) 
n = l P 

and conve r se ly , i f (*) holds. , then f(n) i s a m . a . f . " 

(A) From the d e f i n i t i o n , we no te t h a t Z(n) i s a m .a . f . and Z(pk) = Pf e + 1 
for every prime p . The re fo re , from ( * ) , we have 

£ Z(n)n"s = II (1 + ^2P"S + £ \p- 2 s + FhP~3s + •••) 
n»l p 

= n ( i - p _ s - p-zs)-\ 
V 

where we used the fact that the (ordinary) generating function of the sequence 

^n + i^-o i s f(x) = (1 " x ~ « 2 )" 1 -
(B) We have, according to (*), 

n (i - p-sv2s) = n (i + np)p-s + np2)p-2s + np3)p-3s + •••) 
P V 

- £ f(n)n-s, 
n= 1 

where f(n) is a m.a.f. and /(l) = 1, f(p) = -1, f(p2) = -1, and /(p*) = 0 for 
every prime p and /c > 2. Thus the problem reduces to that of finding a m.a.f. 
/(n) with the above-stated properties. By choosing f(n) such that f(l) = 1 and 

f(pk) = P(p) - lyCp^"1)!, 

where y i s the Mobius f u n c t i o n , for every prime p and k ^ 1 the above r e q u i r e -
ments a r e s a t i s f i e d . I f n = pnipnz . . . p n k 5 then s i n c e y i s a m . a . f . , we have 

f{n) =M(Pmi, pmi, . . . . POTfc) • |y(n/(pm ipm 2 . . . pmk))\ 

= y(p(n) * |y (n /P(n) ) | 

from the definition of P(n), and this proves (B). 

-Also solved by L. Kuipers and the proposer. 
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Say A 

H-360 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 21, no. 4, November, 1983) 

Let: F F 4- F2 = A 

F F + F2 = A 
x n + l1 n + 2 ^ c n+3 M 2 

W p + F2 -A 
Show that: 

1. no integral divisor of A is congruent to 3 or 7 modulo 10, 

2. 4^2 + 1, as well as A1A3 + 1, are products of two consecutive integers. 

Solution by Paul S. Bruckman, Fair Oaks, CA 

We make a change in notation. Let 

Bn = FnFn + l + ?« + 2 (1) 
n̂ " BnBn+1 + 1, (2) 

°n " S*Bn+2 + 1, M - 0, 1, 2, ... . (3) 

Note that 

Bn = F„FB+1 + Fn+3F„+1 + (-l)n+1 = Fn+1(Fn+, + Fn) - (-l)n 

= Fn + i(Pn + 2 + Fn + i + Fn + 2 - Fn + 1) - (-1)", 
or 

Bn = 2Fn+1Fn+2 - (-1)". (4) 

Proof of Part 1: It is sufficient to prove that no prime p with p E ±3 
(mod 10) divides Bn (for all ri) , since any number congruent to 3 or 7 (mod 10) 
divisible by such a prime. Note that 

B„ = FnFn + 1 + (Fn + 1 + Fn)2 = F2
n + 1 + 3Fn + 1Fn + F>, 

or upon factorization: 

Bn = (Fn+1 +a2Fn)(Fn+1 + S 2 F n ) , (5) 

where a and 3 are the usual Fibonacci constants. 
Suppose p is any prime with p E ±3 (mod 10). Then, (5/p) = (p/5) = -1. 

According to the calculus of "complex residues" (see [1])9 we can define 

a = 2_1(1 + i/5) and 3 = 2_1(1 - )/5) (mod p) 

as "complex residues" and manipulate such quantities algebraically in a manner 
analogous to that employed with ordinary complex numbers. In this proof, we 
assume that all congruences are modulo p and omit the notation "(mod p)" where 
no confusion is likely to arise. 

Assume Bn E 0 (mod v) . Then one of the two factors indicated in (5) must 
vanish (mod p) . If Fn + 1 + a2Fn E 0, thenan + 1 - 3n + 1 + an + 2 - $n~2 E 0, imply-
ing 

an + 1(l + a) E 3n"2(33 + 1) ̂ >an + 3 = 23n =»a2n + 3 = 2(-l)n 

and 
32n + 3 E -2-1(-l)n. 

Hence, 
F2n+3 = 5-^(a2n + 3 - 32n + 3) = (2 + 2"1)5-^(-l)n E 2-15ig(-l)n. 
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Similarly, if Fn + 1 + $2Fn E 05 then F2n + 3 = -2"151"2(-l)n - Hence, Bn E 0 implies 
F2n + 3 E ±2~15is. However, this is impossible, since F2n + 3 is "real," while 5^, 
and thus ±2"15i$ are "imaginary" (mod p) . This contradiction establishes that 
Bn t 0 (mod p) , and hence the desired result. 

Proof of Part 2: Using (2) and (4), 

Cn = (2Fn+1Fn+2 - (-l)n)(2Fn+2Fn+3 + (-lj») + 1 

= ^n+l^n + 2^n+3 ~~ ^-v 1J ^n+2^n+3 ~ ^n+l) 

= 2 F n + 2 ( 2 F ^ + 1 F n + 3 - (-1) ) 

= 2F„2
+2{2(F„2

+2 - ( -1 ) " + 1 ) - ( - 1 ) " } , 

Cn = 2F*+2(2F*+2 + ( - 1 ) " ) . (6) 
Also , 

^n = (2F n + 1 F n + 2 - (~Dn)(2Fn + 3Fn + k - ( - l ) n ) + 1 

= /*Fn + IFn + 2Fn + 3Fn + k ~ 2(~l^n(Fn+lFn+2 + Fn + 3Fn + 0 + 2 

= hF F (F - F ) (F + F ) 
^ n + 2 n+3K n + 3 Ln + 2' K n+ 3 i n + 2 / 

- 2 ( - l ) " { F n + 2 ( F „ + 3 - Fn + 2) + Fn+3(Fn+3 + Fn + 2)} + 2 
= ^Fn+2Fn+3^Fn+3 ~ Fn + 2^> ~ 2 ( ~ 1 ) " (2Fn+ 2Fn+ 3 ~ Fn+2 + Fn+3*> + 2 

- (F„2
+3 " Fn^^Fn + 2Fn+3 ~ 2 ( - D " ) " ( - D " ( ^ + A + 9 ~ 2 < - l ) " ) 

= ( F „ 2
+ 3 - Fn+2 ~ ( - D n ) ( ^ n + 2 ^ + 3 " 2 ( - l ) " > 

= 2 ( ^ n + 3 "~ ^ M + 3 ^ n + l ) (2Fn+2Fn+3 - ~ " ( - l ) ) 

= 2 F B + 3 ( F „ + 3 - Fn+1)(2Fn+2Fn+3 - ( - 1 ) " ) , 
or 

°» = 2Fn+2Fn+3(2Fn+2Fn+3 - ( - 1 ) " ) . (7) 

We see from (6) and (7) t h a t Cn and Dn a r e equal to p roduc t s of two consecu t ive 
i n t e g e r s . Q.E.D. 

Reference 
1. Paul S. Bruckman. "Some Divisibility Properties of Generalized Fibonacci 

Sequences." The Fibonacci Quarterly 17, no. 1 (1979):42-49. 

Also solved by L. Kulpers and the proposer, 

Pell-Hell 

H-361 Proposed by Verner E. Hoggatt, Jr., deceased 
(Vol. 21, no. 4, November, 1983) 

Let Hn = -P2n/2, n > 0, where Pn denotes the nth Pell number. Show that 

Hm + Hn = Fk 

Em + Hn = Pk + Pfc-1 

if and only if m = n + 1, where Zt = In + 1 and 
?2«+2/2 + P2n/2 = ((2P2B+1 + P2„> + P2n)/2 = P2„+1 + P2n-

Editorial Note: Refer to the January 1972 article on the Generalized Zecken-
dorf Theorem for Pell Numbers. 

94 [Feb. 



ADVANCED PROBLEMS AND SOLUTIONS 

(3) 

Solution by Paul S. Bruckman, Fair Oaks, CA 

We recall or indicate (without proof) some of the basic definitions and 
properties of the Pell and "modified Pell" numbers: 

Pn = y|(an - 3n); Qn = j(a» + 3n), n = 0, 1, 2, ..., (1) 

where a E 1 + /2, g E 1 - /2. 

Pn + 2 = 2Pn + 1 + Pn; Qn + 2 = 2«n+1 + «n. (2) 

Pn and ̂ n are increasing with n, except for §0 = gx = 1; 
Pn and §n are positive, except for P0 = 0. 

PU|PV iff u\v; QjQv =>U\V. (4) 
Setting u = 2, we see that Pn is even iff n is even. 

^n ~ 2Pn = ("Dn; hence, £n is odd for all n. (5) 
P(a+ 1)2, + P(a- 1)2, = 2 ? ^ ; Q(,+ 1)& - ̂ . 1}, = 2QbQab , if 2? is odd. (6) 

P » + P „ - l = 8 n « (7) 
(2Pm + „Sm_„, if w + n is even; 

Plm +P2n ={ (8) 
\2Pm-nQm+n» ±f m + n Is odd. 

Most of these identities and properties follow readily from the definitions in 
(1), or are obtainable from the abundant literature on these sequences. Given 
two positive integers m and n, we define s E m -f n and d = m - n5 where without 
loss of generality, we can assume m ̂  n. We first note that there is an error 
in the statement of the problem; the first part of the problem should say: 

Em + Hn = Pk if and only if m = n, in which case k = 2n. (9) 

Proof of Part 1: The proposed equation is equivalent to the following: 

P2m +Pzn = 2Pk- (10) 
Hence, Pk is the arithmetic mean of P2m and P2n . Since the Pi

 fs are increas-
ing with i and since 777 > n, this implies: 2n < /c < 2m. We consider two possi-
bilities: 777 + n is even or ffl + n is odd. 

(a) s is even: Then, using (8), we must solve Pk = PsQd. Thus, from (4), s\k9 
or k = rs for some r > 1. Since 2n < r(77Z + n) < 2777, we must have r = 1; hence, 
since Ps > 0, we must have Qd = 1 and d = 0 or L Since <i is even, d= 0, i.e., 
777 = n, so k = In. This is the only solution of (10) in this case. 

(b) s is odd: Again using (8), we are, therefore, required to solve Pk = PdQS' 
Hence, again using (4), d\k, or k = rd for some r > 1. If r is even, so is k; 
therefore, Pk [using (4)]. But d is odd; hence, Pd and Qs are odd [by (4) and 
(5)], making it impossible for Pk to be even. This contradiction shows that 
v must be odd. Incidentally, this also shows that k must be odd. If r = 1, 
then (since d > 1) we have Qs = 1 and s = 0 or 1, which is impossible, because 
s > 3. Therefore, r must be odd and greater than 2. Now the assumed equation 
implies 

us ing 

Hence, 

1985] 

p* 
the f i r s t p a r t of 

PdQs < ZPd<kr-l)d> 

~ Ppd ~ Pd®s ~ 2Pd®(r-l)d P(r-
( 6 ) . S i n c e r > 2 and d > 1 , 

P ( r . 2 ) d > 0 and Pd > 1 . 

w h i c h i m p l i e s 

•2)<f 
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Qs < 2Q(r_l)d< S(r_i)d+1» 

using (2). Then, by the property in (3), s < (r - l)d + 1, or equivalently, 
2m < k. However, since In < k ^ 2m, this implies that k = 2m9 i.e., k is even: 
CONTRADICTION! Therefore, no solution of (10) exists in this case. This es-
tablishes (9) . 

Proof of Part 2: We see from (7) that the proposed equation is equivalent 
to 

Plm + F2n = Wk- (11) 

We again consider two cases: s is even or s is odd. 

(a) s is even: Then, using (8), we are required to solve Qk = PsQrf. Since s is 
even, so is Ps , hence Q^. However, this is impossible, since Qk is odd for all 
k. This contradiction eliminates any solutions in this case. 

(b) s is odd: Now we are required to solve Qk = PrfQs* Using (4), we have s\k9 
or k = rs for some v > 1. If r = 1, then Qk = Qs > 0, so Pd = 1, implying that 
k = 1. Then, m = n + I and k = 2n + 1. This is a solution to equation (11). 
Suppose r > 2. Then, since Qrs - Q(r_2)s = 2QsQ(r-i)s [from (6)], we have 

Qk = «ra = FdQs > 2«ae(2._1)8, 
implying that Pj > 2^p_ ̂ g. But clearly 2Qn > P̂  for all n [using (7)]. Thus, 
Pd > P(r_ i)sj which implies d > (r - l)s, i.e., (m - ri) > (P - 1) (m + n) . This 
can be true only if v = 1, which contradicts the hypothesis that v ^ 2. 

Hence, Hm + En = §k if and only if /?? = n + 1, where fc = 2n + 1. Q.E.D. 

Also solved by L. Kuipers. 

#o*o* 


