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1. INTRODUCTION

Throughout this paper we shall suppose that N is an odd perfect number, so
that ¥ is an odd integer and O(N) = 2N, where 0O is the positive-divisor-sum
function. There is no known example of an odd perfect number, and it has not
been proved that none exists. However, a great number of necessary conditions
which must be satisfied by N have been established. The first of these, due
to Euler, is that

N = paqfﬁl - thBt

for distinct odd primes p, g;5 ..., q,, With p = a =1 (mod 4). (We shall al-
ways assume this form for the prime factor decomposition of N). Many writers
have found conditions which must be satisfied by the exponents 2B;, ..., 2B,
and it is our intention here to extend some of those results. We shall find it
necessary to call on a number of conditions of other types, some of which have
only recently been found. These are outlined in Section 2.

It is known (see [8]) that we cannot have B; = 1 (mod 3) for all 7 or (see
[91) B; = 17 (mod 35) for all ©. Also, if R, = **+ = B¢ = B, then: from [6],
B # 2; from [4], B # 3; and from [9], B # 5, 12, 24, or 62. We shall prove

Theorem 1. If N as above is an odd perfect number and B, = -+ = B, = B, then
R +# 6, 8 11, 14, or 18.

The possibility that B, = *++ = B, = 1 (with B; > 1) has also been consid-
ered. In this case, it is known (see [1]) that B; # 2 and (see [7]) that B; #
3; by a previously mentioned result [8], we also have that B; # 1 (mod 3). We
shall prove

Theorem 2. If N as above is an odd perfect number and B, = --- = B, = 1, then
B, # 5 or 6.

The computations required to prove these two theorems were mostly carried
out on the Honeywell 66/40 computer at The New South Wales Institute of Tech-
nology. We also made use of some factorizations in [10].

Finally, we shall introduce a theorem whose proof is quite elementary, but
it is a result which, to our knowledge, has not been noted previously. Euler's
form for N, shown above, follows quickly by considering the equation o(N) = 2W,
modulo 4. Using the modulus 8 instead, we will obtain

Theorem 3. 1If N as above is an odd perfect number and x is the number of prime
powers q%Bi in which both g, = 1 (mod 4) and B; = 1 (mod 2), then

p - o = 4x (mod 8).
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To obtain the following corollary, we then only need to notice that x = 0.

ngo]lary. If V as above is an odd perfect number and B, = 0 (mod 2) for all
7, then p = a (mod 8).

2. PRELIMINARY RESULTS

Since we are assuming that o() = 2V, it is clear in the first place that
any odd divisor of o(N) is also a divisor of N. The proof of Theorem 1 makes
use of the following facts.

(i) I is divisible by (p + 1)/2 (since a is odd).

(ii) If g and 28 + 1 = r are primes, then P}O(qzs) if and only if ¢ = 1 (mod
r). Furthermore, if P[O(q28), then P”O(qzs). If S!O(qzs) and s ¥ r,
then s = 1 (mod r). (This is a special case of results given, for exam-
ple, in [9].)

(ii1) Tf By = +++ =B, =R and 28 + 1 = r is prime, then r*|V and p = 1
r). In particular, p # r. (See [6] for generalizations of this.)

(iv) 1If n|N, then o(n)/n < 2.

(mod

The proof of Theorem 2 uses (i), (ii), and (iv), as well as the following
results.

(v) The second greatest prime factor of N is at least 1009 (see [3]) and the
greatest at least 100129 (see [5]).

(vi) The equation q®> + ¢ + 1 = p% has no solution in primes p and q if a is
an integer greater than 1 (see [1]).

3. PROOF OF THEOREM 1

We shall assume that B = 6, 8, 11, 14, and 18, in turn, and in each case
obtain a contradiction, usually along the following lines. In each case, 28 +
1 =r is prime so that, by (iii), PZS“N. Then O(PZS)|N. If s is prime, s # p
and SIG(PZB), then s = 1 (mod »r) and SZB”N, so that r”s(sze), by (ii). Apply-—~
ing the same process to other prime factors of 0(s%®) and repeating it suffi-
ciently often, we find that P28+1|N, which is our contradiction.

Except in the case B = 8, we were not able to carry out sufficiently many
factorizations explicitly. (We generally restricted ourselves to seeking prime
factors less than 5 x 10°.) However, we were able to test whether unfactored
quotients were pseudoprime (base 3) or not. Each P below is a pseudoprime and
each M is an unfactored quotient which is not a pseudoprime, and hence is not
a prime. We checked that each M was not a perfect power so that the existence
of two distinct prime factors of each M was assured. We checked. also that no
M's or P's within each case had any prime factors in common with each other or
with known factors of N. In this way, we could distinguish sufficiently many
distinct prime factors of N to imply that r26+l[N. There is a slightly special
treatment required when B = 6.

We shall give the details of the proof here only in the cases 8 = 6 and
B = 11. These illustrate well the methods involved. The other parts of the
proof are available from the first named author.

(a) Suppose B = 6, so that 1312"N; 0(13*2?) = 53« 264031 » 1803647. The relevant
factorizations are given in Table 1. We distinguish two main cases.
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Table 1
q Some factors of o(q'?)/13
53 3297113, P,
264031 P,
1803647 131, M,
131 79, @
79 M,
(A) 131 Q= M,
) 131 Q= q,
99 910

Suppose first that p # 53. We may assume that q,;_1q,;|M; (£ = 1, 2) and
Qj+glpj (g =1, 2). 1In Table 1, @ is also a pseudoprime (base 3) and we need
to consider two distinct alternatives. In (A), we suppose that @ = M3 is com-
posite, so that q7qB|M3, say. (We checked that ¢ was not a perfect power.) In
(B), we suppose that ¢ is prime, so we write @ = qg- 1If this is so, then g, #
p, since @ = 3 (mod 4). Thus, we have 14 primes:

53, 79, 131, 264031, 1803647, 3297113, q, (1 <7 <6)

with g, and g4, or with g, and ¢g,,. Each of these primes is congruent to 1
(mod 13) and at most one of them might be p. Put

A = {53, 79, 131, 264031, 1803647, 3297113, M,,M,,P1,P,,Q, (@**-1)/(@-1)}.

We checked that no two elements of A had a common prime factor; therefore, the
14 primes above are distinct. Hence, 1313|N, the desired contradiction.

Now suppose that p = 53. By (i), 3|N and so 0(3'?) = 797161’N. Certainly
there is a prime ¢q,; dividing 0(797161%2)/13. We thus have 13 primes:

79, 131, 264031, 797161, 1803647, qi’(l <7< 4), dgs> 91,

with q, and qg4, or with g4 and q,,. Each of these is congruent to 1 (mod 13),
and we checked that no two elements of the set

(A - {53, 3297113, P, }) U {797161, o(797161"?)/13}

had a common prime factor. Hence, again, 1313|N.

(b) Suppose B = 11, so that 2322"N, and note that

0(23%2) = 461 - 1289+ M,.

Now refer to Table 2, where an asterisk signifies that the prime is 1 (mod 4),
when that is relevant.

There are three cases to consider. First, suppose that p = 1289. By (i),
3+ 5|W so that ny |V where ny = (3¢ 5+ 23+ 47)%?; but o(ny)/n; > 2, contradict-
ing (iv). Similarly, if p = 461, then we have 37« 11|N so that nle where
ny, = (3711 23)22; but g(n,)/n, > 2.

Now suppose that p # 461 and p # 1289. We may suppose that q,;_1q.; |M;

(1<€72<7) and qlslP. Thus, N is divisible by the following 24 primes, each
1 (mod 23):

47, 139, 461, 1289, 37123, 133723, 281153, 300749, 2258831, q, (1 <17 <15).
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Table 2

q Some factors of G(QZZ)/ZB

461% 139, 133723, P
133723 47, 37123, 2258831, 461 - M,
2258831 300749,% M,

1289* 281153,% M,

47 M

139 M

37123 M,

We checked that the 24 primes given above were distinct. One of them might be
p, so 2323[N, our usual contradiction.

This shows that B # 11. We remark that we also looked at the remaining
possible values of B less than 15, namely, 9, 15, 20, 21, and 23, without fur-
ther success.

4. PROOF OF THEOREM 2

* We begin by proving more than is stated im Theorem 2 in the case in which
3(N.

Lemma. If N as before is an odd perfect number, B,YN and B, = *°* =B, =1,
then B, # 5, 6, or 8.

Proof: We will show first that, if f; = 5, 6, or 8, then 74/N. Notice
that g, = 2 (mod 3) (2 €< < t), since, otherwise, 3|o(q§)lN. In particular,
72/HN, so that q, = 7 if 7]N. In that case, we obtain contradictions, as fol-
lows.

1€ 8, = 5, then 72°|N. But 1123|0(7'°) |V and p # 1123, so 1123°[#. But
1123 = 1 (mod 3). TIf By = 6, then 712|N. Then r = 0(7'%) = 16148168401|N; if
r = p,then.lOBiN, by (i). However, 103 = r = 1 (mod 3). If B,=8, then 716”N,
14009|0(71%) |. Then p # 14009, else 3|N by (i), so 140097 V. But 223[0(14009%)
and 223 = 1 (mod 3).

Now we can show that 13* N for any of these values of B,. Since NV is not
divisible by either 3 or 7, we must have g, = 13 if 13|N. Then B, # 5, else
23|6(13'°) | and 7]0(23%) |W. Also, By # 6, else 264031[0(13'%) |V and 264031 = 1
(mod 3). Similarly, Bi # 8, else 103|o(13*%)|n,

Notice next that, by (ii), divisors of G(qf) (2 £ 1 € t) are congruent to
1 (mod 3), so that O(qf) = paiqfi for some a;, by (0 Sa; <o, 0 < by < 2B1)
and for each 7 (2 € £ < t). There can be at most 28; values of 1 2 2 such that
ql‘O(qf); by (vi), there is at most ome value of 7 2 2 such that O(q%) = pe°
(¢ 2 1). 1t follows that V¥ has at most 28, + 3 distinct prime factors. Of
these, at most two are congruent to 1 (mod 3), namely, p and g,. By (i), cer-
tainly p = 1 (mod 3), so that in fact p = 1 (mod 12).

In our case, when By = 5, 6, or 8, we must have p > 37 (since 13] N) and
has at most 19 distinct prime factors. Using (v), we can now obtain the final
contradiction which proves the lemma:

- 2B,
a = qiz < p ﬁ qi

oWy _p-P"
q, -1 p-lia1q; -1 (continued)

N p~1

t .
2 = I1 ik
=1

1985] 73



EXTENSIONS OF SOME RESULTS CONCERNING ODD PERFECT NUMBERS

<5 1117 19 23 29 37 41 47 53 59 71 83 89 101 107 113 1009 100129 _ ,
410 16 18 22 28 36 40 46 52 58 70 82 88 100 106 112 1008 100128 ~

We shall give the remaining details only in the case B; = 6; the proof for
the case B, = 5 is available from the first named author. By the Lemma, we can
assume that 3|W.

We will assume first that g, -= 3. Then 797161 = 6(312)1N. We cannot have
p = 797161 because then, by (i), 3985812|W: 1621]0(3985812), 7 + 13]c(16212),
19]c(7%), and 127|0(19%), so that n|N, where n = 3'%(7 » 13 + 19 « 127)?; but
og(n)/n > 2 and (iv) is contradicted. Hence, 7971612HN.

Notice that 0(797161%) = 3 = 61 = 151 * 22996651; also note that 7|c(151%)
and 19|U(72). Thus, 7%19%|#. Making use of (i), we then see that p # 1693,
since then (p + 1)/2 =7 + 11% and 7|0(11%), so that 7%|N, and p # 433, since
then (p + 1)/2 = 7 « 31, 331|0(31%) and 7|0(331%), so that again 7°|N. We now
observe that

43|0(22996651%), 631|c(43%), 433|0(631%), 1693|0(433%), 13|0(1693%),

so that n|WV, where n = 3213(7 = 19 « 43)?%; but o(n)/n > 2, contradicting (iv).

Now, we assume that 3%||N, so that we can have at most two values of 7 > 2
with g; = 1 (mod 3). We have 13 = o(3%) |W.

First, we will suppose that p = 13, so that, by (i), 7]N. We cannot have
q1 = 7, because 0(7'2) = 16148168401 = r is prime, 433|c(x?), 37]0(433%), and
37 433 = » = 1 (mod 3). Hence, 72HN, s0 19]0(72)|N. Again, q, # 19, because
599 - 29251|0(1912), 51343|0(5992), and 29251 = 51343 = 1 (mod 3). Thus, 192“N
and for no further values of 7 can be have q; = 1 (mod 3). Therefore, we have
127]0(192) |u.

Clearly, 1272,HN, so gy = 127. Setting g, = 7 and g3 = 19, we must have,
for i > 4, 0(q2) = 7%¢13%¢19°¢1279¢ where a; < 1, b; S a, ¢; <1, and d; < 11,
since, by (ii), any other prime divisors of O(q%) would be congruent to 1 (mod
3). Using (vi), as in the proof of the Lemma, it follows that there are at most
14 primes g; with ¢ > 4. We cannot have 11|V [although o(11%) = 7+ 19], since
then n|W, where n = 327211213 » 19%; but o(n)/n > 2, contradicting (iv). Pos-
sibly 107‘N, since ¢(107%2) = 7 = 13 - 127, but we find that no other prime less
than 500 can be g; for some © 2> 4. Then we have our contradiction: there are
13 primes g, 503 < g < 653, that are congruent to 2 (mod 3); thus,

t

= O (0(?7°19%) 13107 127§ a4,
i 3272192 12 106 126 4-503 g - 1 > °°
q =2 (mod 3)

This shows that p # 13.

We cannot have q; = 13, because 53 * 264031]0(13*%), p # 53 [else 3°|N, by
(1)1, 0(53%) =7 « 409 and 7 = 409 = 264031 = 1 (mod 3). Hence, 132|W, so we
have 62|c(13%) |W.

Suppose that p = 61, so that, by (i), Bl]N. Then g, # 31, since 0(3112) =
42407 + 2426789 + 7908811, 43]0(7908811%), and 13 = 43 = 7908811 = 1 (mod 3).
Thus, 312|F and 331|c(31%)|F. Since 13 = 31 = 331 = 1 (mod 3), then g, = 331.
But 53|0(331%%), 7|0(53%),and 7 = 13 = 31 = 1 (mod 3). This shows that p # 61.
Also, g, # 61, since 187123|0(61*?), 19|0(1871232), and 13 = 19 = 187123 = 1
(mod 3). Hence, 612”N, S0 97'0(612)|N, and we can have no further values of
i > 2 with ¢; = | (mod 3). In particular, 972 }N.

If p = 97, then 7‘N by (i), so g, 7; but 0(7'2) = r (above) = 1 (mod 3).
Thus, q; = 97. But 79|0(97%?) and 79 = 1 (mod 3).

KRR |

This completes the proof.
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5. PROOF OF THEOREM 3

We note first that, modulo 8,

285
Z

- 2 28;  _
) =1l+gq, + q; + 0+ q; =1+ q, t 1+ oo+ q, +1

L+ B;(q, + 1),

o(g

and, writing o = 4aq + 1,

0P = 1+po(@*®) = 1+ p(l+2a(p+1)) = Q2a+ @+ 1).

Since O(lV) = 2N, we have
t
(a+ D@+ 1) I (1 +8,(q; +1)) = 2p (mod 8),

or, since p = 1 (mod 4),

p+1 2 _
(2a + 1)—2— n (1 + Bl(qz + 1)) =1 (mod 4).
=1
If g; =1 (mod 4) and B; = 1 (mod 2), then 1 + B;(g; + 1) = 3 (mod 4); other-
wise, 1 + B;(g; + 1) =1 (mod 4). Thus,
3°2a + DEEL 2 1 (mod 4.

We see that 3% = 2x + 1 (mod 4), so now

P ! L= 1 (mod 4).

(2a + 2x + 1)

Considering separately the possibilities p = 1 (mod 8) and p = 5 (mod 8), we
find that this is equivalent to

a+x§£2—1 (mod 2),

or p-—a=p-4a-1%= 4x (mod 8), as required.

Note: Since this paper was prepared for publication, we have noticed that
Ewell [2] has also given a form of Theorem 3. Both his statement of the theo-
rem and his proof are more complicated than the above.
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