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1. INTRODUCTION 

Throughout this paper we shall suppose that N is an odd perfect number, so 
that N is an odd integer and o(N) = 2N9 where O is the positive-divisor-sum 
function. There is no known example of an odd perfect number, and it has not 
been proved that none exists. However, a great number of necessary conditions 
which must be satisfied by N have been established. The first of these, due 
to Euler, is that 

N = paq2$i ... qf* 

for distinct odd primes p, ql9 ..., qt, with p = a = 1 (mod 4). (We shall al-
ways assume this form for the prime factor decomposition of N) . Many writers 
have found conditions which must be satisfied by the exponents 23i» ...5 2(3t» 
and it is our intention here to extend some of those results. We shall find it 
necessary to call on a number of conditions of other types, some of which have 
only recently been found. These are outlined in Section 2. 

It is known (see [8]) that we cannot have ^ E 1 (mod 3) for all i or (see 
[9]) &i = 17 (mod 35) for all i. Also, if 3i = ••• = 3t = 3, then: from [6], 
3 ^ 2 ; from [4], 3 + 3; and from [9], 3 + 5, 12, 24, or 62. We shall prove 

Theorem 1. If N as above is an odd perfect number and 3i = '•• = 3t = 3» then 
3 + 6, 8, 11, 14, or 18. 

The possibility that 32 = ''' ~ $t ~ 1 (with 3i > 1) has also been consid-
ered. In this case, it is known (see [1]) that $i ^ 2 and (see [7]) that $i ^ 
3; by a previously mentioned result [8], we also have that 3i t 1 (mod 3). We 
shall prove 

Theorem 2. If N as above is an odd perfect number and 3 2
= "*" = 3 ^ = 1 * then 

3i i 5 or 6. 

The computations required to prove these two theorems were mostly carried 
out on the Honeywell 66/40 computer at The New South Wales Institute of Tech-
nology. We also made use of some factorizations in [10]. 

Finally, we shall introduce a theorem whose proof is quite elementary, but 
it is a result which, to our knowledge, has not been noted previously. EulerTs 
form for N9 shown above, follows quickly by considering the equation o(N) = 2/1/, 
modulo 4. Using the modulus 8 instead, we will obtain 

Theorem 3» If N as above is an odd perfect number and x is the number of prime 
powers q2.®t in which both q. = 1 (mod 4) and 8^ = 1 (mod 2), then 

p - a = 4x (mod 8). 
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To obtain the following corollary, we then only need to notice that x = 0. 

CorolTary. If N as above is an odd perfect number and Qi E 0 (mod 2) for all 
i, then p E a (mod 8). 

2. PRELIMINARY RESULTS 

Since we are assuming that o(N) = 2/1/, it is clear in the first place that 
any odd divisor of o(N) is also a divisor of N. The proof of Theorem 1 makes 
use of the following facts. 

(i) N is divisible by (p + l)/2 (since a is odd). 

(ii) If q and 23 + 1 = r are primes, then r\o(q2®) if and only if q E 1 (mod 

p) . Furthermore, if p|a(q26), then p|a(c72e). If s|a(q26) and s ^ r, 

then s E 1 (mod p). (This is a special case of results given, for exam-

ple, in [9].) 

(iii) If Bi = ••• = 3t = 3 a n d 2g + 1 = r is prime, then rh\N and p E 1 (mod 
p) . In particular, p ^ p. (See [6] for generalizations of this.) 

(iv) If n\N, then o(n)/n < 2. 

The proof of Theorem 2 uses (i), (ii), and (iv), as well as the following 
results. 

(v) The second greatest prime factor of N is at least 1009 (see [3]) and the 
greatest at least 100129 (see [5]). 

(vi) The equation q2 + q + 1 = pa has no solution in primes p and q if a is 
an integer greater than 1 (see [1]). 

3. PROOF OF THEOREM 1 

We shall assume that 3 = 6, 8, 11, 14, and 18, in turn, and in each case 
obtain a contradiction, usually along the following lines. In each case, 23 + 
1 = p is prime so that, by (iii), r2® \\N. Then o(r2B)\N. If s is prime, s i p 
and s\o(r2B), then s = 1 (mod r) and S2B\\N, SO that P||G(S26), by (ii) . Apply-
ing the same process to other prime factors of o(s2B) and repeating it suffi-
ciently often, we find that p26 + 1|/i/, which is our contradiction. 

Except in the case 3 = 8 , we were not able to carry out sufficiently many 
factorizations explicitly. (We generally restricted ourselves to seeking prime 
factors less than 5 x 106.) However, we were able to test whether unfactored 
quotients were pseudoprime (base 3) or not. Each P below is a pseudoprime and 
eachM is an unfactored quotient which is not a pseudoprime, and hence is not 
a prime. We checked that each M was not a perfect power so that the existence 
of two distinct prime factors of each M was assured. We checked also that no 
Af's or P's within each case had any prime factors in common with each other or 
with known factors of N. In this way, we could distinguish sufficiently many 
distinct prime factors of N to imply that p2e+1|iV. There is a slightly special 
treatment required when 3 = 6 . 

We shall give the details of the proof here only in the cases 3 = 6 and 
3 = 11. These illustrate well the methods involved. The other parts of the 
proof are available from the first named author. 

(a) Suppose 3 = 6, so that 1312||ZV; a(1312) = 53- 264031- 1803647. The relevant 
factorizations are given in Table 1. We distinguish two main cases. 
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Table 1 

q 

53 
264031 
1803647 

131 
79 

(A) 131 

q9 

Some factors of a(^12)/13 

3297113, P± 

Pi 
131, A^ 
79, Q ; 
M2 

Q = M 3 

Q = <79 
<7l.O 

Suppose first that p ^ 53. We may assume that q2i- l^iil^i (̂  = 1» 2) and 
^J + IJPJ (j = 1, 2). In Table 1, § is also a pseud op rime (base 3) and we need 
to consider two distinct alternatives. In (A), we suppose that Q = M3 is com-
posite, so that q7qQ\M3, say. (We checked that Q was not a perfect power.) In 
(B) , we suppose that Q is prime, so we write Q = q3. If this is so, then q3 4-
p, since Q E 3 (mod 4). Thus, we have 14 primes: 

53, 79, 131, 264031, 1803647, 3297113, qi (1 < i < 6) 

with q7 and qQi or with q9 and <J10, Each of these primes is congruent to 1 
(mod 13) and at most one of them might be p. Put 

A = {53, 79, 131, 264031, 1803647, 3297113, M19M29Pl9P2,Q9 (Q13 - I) / (Q - 1)}. 

We checked that no two elements of A had a common prime factor; therefore, the 
14 primes above are distinct. Hence, 1313|/1/, the desired contradiction. 

Now suppose that p = 53. By (i) , 3\-N and so a(312) = 79716l|tf. Certainly 
there is a prime qY1 dividing a(79716112)/13. We thus have 13 primes: 

79, 131, 264031, 797161, 1803647, qi (I < i < b) 9 q&9 q12_ 

with q7 and qQ9 or with qs and q1Q. Each of these is congruent to 1 (mod 13), 
and we checked that no two elements of the set 

(A - {53, 3297113, Px}) U {797161, a(79716112) /13} 

had a common prime factor. Hence, again, 1313|#. 

(b) Suppose 3 = 11, so that 2322|j/l/, and note that 

a(2322) = 461 • 1289 • M1. 

Now refer to Table 2, where an asterisk signifies that the prime is 1 (mod 4), 
when that is relevant. 

There are three cases to consider. First, suppose that p =1289. By (i), 
3 • 5\N SO that n1\N where n1 = (3•• 5 • 23 • 47)22; but o(n1)/n1 > 2, contradict-
ing (iv). Similarly, if p = 461, then we have 3 • 7 • ll\N SO that n2\N where 
n2 = (3 • 7 • 11 • 23)22; but q(n2)/n2 > 2. 

Now suppose that p ^461 and p ^ 1289. We may suppose that ' q2i -±q2i \^i 
(1 < i < 7) and <715|P. Thus, N is divisible by the following 24 primes, each 
1 (mod 23): 

47, 139, 461, 1289, 37123, 133723, 281153, 300749, 2258831, q. (1 < i < 15). 
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Table 2 

<? 

461* 
133723 
2258831 
1289* 
47 
139 

37123 

Some factors of a(^22)/23 

139, 133723, P 
47, 37123, 2258831, 461 • M2 
300749,* M3 
281153,* Mh 

M5 
M& 
M7 

We checked that the 24 primes given above were distinct. One of them might be 
p, so 2323\N, our usual contradiction. 

This shows that 3 ̂  11. We remark that we also looked at the remaining 
possible values of 3 less than 15, namely, 9, 15, 20, 21, and 23, without fur-
ther success. 

k. PROOF OF THEOREM 2 

We begin by proving more than is stated in- Theorem 2 in the case in which 

Lemma. If N as before is an odd perfect number, 3 \ N and £>2 = ' ' ' = $t = 19 

then 3i ̂  5, 6, or 8. 

Proof: We will show first that, if 3i = 5, 6, or 8, then 7)(N. Notice 
that q. E 2 (mod 3) (2 < i < t) , since, otherwise, 3|a(<7?)|#. In particular, 
72f/l/^so that q1 = 7 if l\N. In that case, we obtain contradictions, as fol-
lows 

If 6, = 5, then 71U\N. But 11231 oO1 °) \N and p * 1123, so 11232||#. But 
—"~ ' '~12^ - 16148168401 |i7; if 1123 = 1 (mod 3). If 3i = 6, then 712\\N. Then r = a(7iZ) 

by (i). However, 103 E r = 1 (mod 3), If then 7 l bp 9 
But 223 a(140092) 

r = p, then 103|tf, -, „ . 
14009|a(716) |/1/. Then p ̂  14009, else 3 |/7 by (i) , so 140092 \\N 
and 223 = 1 (mod 3). 

Now we can show that 13 \ N for any of these values of 3i- Since N is not 
divisible by either 3 or 7, we must have q± = 13 if 13\N. Then 3i + 5, else 
23|a(1310)\N and 7|a(232)\N. Also, 3i * 6, else 264031|a(1312)\N and 264031 = 1 
(mod 3). Similarly, 3i + 8, else 103 | o( 1316) \N. 

Notice next that, by (ii), divisors of o(q^) (2 < i < t) are congruent to 
1 (mod 3), so that a(q2) = pa^q\- for some ai9 bi (0 < a^ < a, 0 < £; < 23i) 
and for each i (2 < i < t) . There can be at most 23i values of i > 2 such that 
qi\o(q2); by (vi) , there is at most one value of i > 2 such that oiq^) = pa 

(a > 1). It follows that N has at most 2&1 + 3 distinct prime factors. Of 
these, at most two are congruent to 1 (mod 3), namely, p and q±. By (i), cer-
tainly p = 1 (mod 3), so that in fact p = 1 (mod 12). 

In our case, when 3i = 5, 6, or 8, we must have p > 37 (since 13 \ N) and 
has at most 19 distinct prime factors. Using (v), we can now obtain the final 
contradiction which proves the lemma: 

N 
t 

n 
«i - 4i 

- 1 
< 

t 

n <7< " ! (continued) 
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.^j^^ZIilililZALAZlliiZl^li 191 191 111 1009 100129 < 
4 10 16 18 22 28 36 40 46 52 58 70 82 88 100 106 112 1008 100128 

We shall give the remaining details only in the case 3i = 6; the proof for 
the case 3i = 5 is available from the first named author. By the Lemma, we can 
assume that 3\N. 

We will assume first that q1 = 3. Then 797161 = cr(312)\N. We cannot have 
p = 797161 because then, by (i) , 3985812 \\N: 1621 | a(3985812) , 7 • 13|a(16212), 
19|a(72), and 127|a(192)9 so that n\N, where n = 312(7 • 13 • 19 • 127)2; but 
o(n)/n > 2 and (iv) is contradicted. Hence, 7971612 \\N. 

Notice that a(7971612) = 3 * 61 • 151 • 22996651; also note that 7|a(1512) 
and 19|a(72). Thus, 72192\\N. Making use of (i) , we then see that p + 1693, 
since then (p + l)/2 = 7 • ll2 and7|a(ll2), so that 73 \N9 and p + 433, since 
then (p + l)/2 = 7-3 1 , 331 |a(312) and 7|a(3312), so that again 73|/l/. We now 
observe that 

43]a(229966512), 63l|a(432), 433|a(6312), 1693|a(4332), 13Ja(16932), 

so that n\N9 where n = 31213(7 • 19 • 43)2; but a(n) In > 2, contradicting (iv) . 
Now, we assume that 32||/1/, so that we can have at most two values of i > 2 

with qi E 1 (mod 3). We have 13 = a(32) \N. 
First, we will suppose that p = 13, so that, by (i), 7 \N. We cannot have 

<7x = 7, because a(712) = 16148168401 = v is prime, 433|a(r2), 37|a(4332), and 
37 = 433 E v E 1 (mod 3). Hence, 72||/1/, so 19|a(72)|^. Again, q1 f 19, because 
599 • 29251 |a(1912), 513431 a(5992), and 29251 = 51343 = 1 (mod 3). Thus, 192|il/ 
and for no further values of i can be have q. E 1 (mod 3). Therefore, we have 
127|a(192)\N. 

Clearly, 1272 % N 9 so q± = 127. Setting q2 = 7 and q3 = 19, we must have, 
for i > 4, 0{ql) = 7ai \Zhi \9Ci \27di where a^ < 1, ̂  < a, ot < 1, and d^ < 11, 
since, by (ii), any other prime divisors of o(q^) would be congruent to 1 (mod 
3). Using (vi) , as in the proof of the Lemma, it follows that there are at most 
14 primes qi with i > 4. We cannot have ll|/l/ [although a(ll2) = 7 • 19], since 
then n\N9 where n = 3272ll213 • 192; but o(n)/n > 2, contradicting (iv). Pos-
sibly 107\N9 since a(1072) = 7 • 13 • 127, but we find that no other prime less 
than 500 can be q^ for some i ̂  4. Then we have our contradiction: there are 
13 primes q9 503 ̂  q ̂  653, that are congruent to 2 (mod 3); thus, 

= o(N) < a(3272192) j_3 J_07 J.27 6i¥ q < 
N 3272192 12 106 126 ^=503 q - 1 

q E 2 (mod 3) 
This shows that p + 13. 

We cannot have q1 = 13, because 53 • 264031 | a(1312) , p ̂  53 [else 33|/1/, by 
(i)], a(532) = 7 - 4 0 9 and 7 E 409 E 264031 E 1 (mod 3). Hence, 132\\N9 SO we 
have 62|a(132)\N. 

Suppose that p = 61, so that, by (i), 31|F. Then q1 + 31, since a(3112) = 
42407 • 2426789 • 7908811, 43|a(79088112), and 13 E 43 E 7908811 = 1 (mod 3). 
Thus, 312||/1/ and 3311 G(312) \W« Since 13 E 31 E 331 E 1 (mod 3), then q1 = 331. 
But 53ja(33112), 7|a(532), and 7 E 13 E 31 E 1 (mod 3). This shows that p + 61. 
Also, q1 + 61, since 187123|a(6112), 19|a(1871232), and 13 E 19 = 187123 = 1 
(mod 3). Hence, 612||/1/, so 97 | a(612) \N9 and we can have no further values of 
i > 2 with qi E 1 (mod 3). In particular, 972 |/1/. 

If p = 97, then 7|# by (i), so q1 = 7; but a(712) = r (above) E 1 (mod 3). 
Thus, q1 = 97. But 79|a(9712) and 79 = 1 (mod 3). 

This completes the proof. 
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5. PROOF OF THEOREM 3 

We note first that, modulo 8S 

a(^f') = 1 + Ri + q\ + ••• + qlBi = 1 + qi + 1 + ... + qt + 1 

= i + e .(<7. + i ) s 

and, writing a = 4a + 1, 

a(p«) = 1 + po(pha) = 1 + p(l + 2a(p +.1)) = (2a + 1)(p + 1). 

Since O(N) = 22V, we have 

t 
(2a + l)(p + 1) II (1 + 3, (a, + 1)) = 2p (mod 8), 

i = l ^ ^ 

or, since p = 1 (mod 4), 

(2a + D^-t-i" O (1 + B (a. + 1)) = 1 (mod 4). 
z i = i 

If a^ E 1 (mod 4) and 3i = 1 (mod 2), then 1 + 3i(ai + 1) = 3 (mod 4); other-
wise, 1 + 3i(qi + 1) E 1 (mod 4). Thus, 

3*(2a + 1)P * 1 E 1 (mod 4). 

We see that 3* E 2x + 1 (mod 4), so now 

(2a + 2x + 1)P * X E 1 (mod 4). 

Considering separately the possibilities p E 1 (mod 8) and p E 5 (mod 8) , we 
find that this is equivalent to 

_ P - 1 a + x - £ — T — (mod 2), 

o r p - a = p - 4 a - I E kx (mod 8), as required. 

Note: Since this paper was prepared for publication, we have noticed that 
Ewell [2] has also given a form of Theorem 3. Both his statement of the theo-
rem and his proof are more complicated than the above. 
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