ADVANCED PROBLEMS AND SOLUTIONS

Edited by

RAYMOND E. WHITNEY

Please send all communucations concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-385 Proposed by M. Wachtel, Zurich, Switzerland
Solve the following system of equations:
I. $U_{f(n)}^{2}+V_{g(n)}^{2}-3 \cdot U_{f(n)} V_{g(n)}=1$;
II. $3 \cdot U_{h(n)} V_{i(n)}-\left(U_{h(n)}^{2}+V_{i(n)}^{2}\right)=1$.

H-386 Proposed by Paul S. Bruckman, Fair Oaks, CA
Define the multiple-valued Fibonacci function ${ }^{m} F: C \rightarrow C$ as follows:

1. ${ }^{m} F(z)=\frac{1}{\sqrt{5}}\left(\exp L z-\exp L^{\prime} z\right), z \in C, m \in \mathbb{Z}$,
where $L=\log \alpha, \alpha=\frac{1}{2}(1+\sqrt{5}), L^{\prime}=(2 m+1) i \pi-L$, and "log" denotes the principal logarithm.
a. Show that ${ }^{m} F(n)=F_{n}$ for all integers m and n.
b. Prove the multiplication formula
2. $\prod_{m=0}^{n-1} m\left(k+\frac{r}{n}\right)=5^{-\frac{1}{2}(n-1)} F_{n k+r}$, where n, k, r are integers with $0<r<n$.
c. With m fixed, find the zeros of ${ }^{m} F$.

H-387 Proposed by Lawrence Somer, Washington, D.C.
L\&t $\left\{w_{n}\right\}_{n=0}^{\infty}$ be a second-order linear integral recurrence defined by the recursion relation

$$
w_{n+2}=a w_{n+1}+b w_{n},
$$

where $b \neq 0$. Show the following:
(i) If p is an odd prime such that $p \nmid b$ and $w_{1}^{2}-w_{0} w_{2}$ is a quadratic nonresidue of p, then

$$
p \nmid \omega_{2 n} \text { for any } n \geqslant 0 .
$$

(ii) If p is an odd prime such that $(-b)\left(w_{1}^{2}-w_{0} w_{2}\right)$ is a quadratic nonresidue of p, then

$$
\begin{equation*}
p \nmid w_{2 n+1} \text { for any } n \geqslant 0 \tag{iii}
\end{equation*}
$$

If p is an odd prime such that $-b$ is a nonzero quadratic residue of and $w_{1}^{2}-w_{0} w_{2}$ is a quadratic nonresidue of p, then

$$
p \nmid w_{n} \text { for any } n \geqslant 0
$$

H-388 Proposed by Piero Filipponi, Rome, Italy
This problem arose in the determination of the diameter of a class of locally restricted digraphs [1].

For a given integer $n \geqslant 2$, let $P_{1}=\left\{p_{1,1}, p_{1,2}, \ldots, p_{1, k_{1}}\right\}$ be a nonempty (i.e., $k_{1} \geqslant 1$) increasing sequence of positive integers such that $p_{1, k_{1}} \leqslant n-1$. Let $P_{2}=\left\{p_{2,1}, p_{2,2}, \ldots, p_{2, k_{2}}\right\}$ be the increasing sequence containing all nonzero distinct values given by $p_{1, i}+p_{1, j}(\bmod n)\left(i, j=1,2, \ldots, k_{1}\right)$. In general let $P_{h}=\left\{p_{h, 1}, p_{h, 2}, \ldots, p_{h, k_{h}}\right\}$ be the increasing sequence containing all nonzero distinct values given by $p_{h-1, i}+p_{1, j}(\bmod n)\left(i=1,2, \ldots, k_{n-1}\right.$, $\left.j=1,2, \ldots, k_{1}\right)$. Furthermore, let $B_{m}(m=1, j, \ldots)$ be the increasing sequence containing all values given by

$$
\bigcup_{j=1}^{m} P_{j}
$$

Find, in terms of $n, p_{1,1}, \ldots, p_{1, k_{1}}$, the smallest integer t such that

$$
B_{t}=\{1,2, \ldots, n-1\}
$$

Remark: The necessary and sufficient condition for to exist (i.e., to be finite) is given in [1]:

$$
\operatorname{gcd}\left(n, p_{1,1}, \ldots, p_{1, k_{1}}\right)=1
$$

In such a case we have $1 \leqslant t \leqslant n-1$. It is easily seen that

$$
\begin{aligned}
& k_{1}=1 \Longleftrightarrow t=n-1 \\
& k_{1}=n-1 \Longleftrightarrow t=1
\end{aligned}
$$

furthermore, it can be conjectured that either $t=n-1$ or $1 \leqslant t \leqslant[n / 2]$.
Reference

1. P. Filipponi. "Digraphs and Circulant Matrices." Ricerca Operativa, no. 17 (1981):41-62.

An Example
$n=8 \quad P_{1}=\{3,5\} \quad \rightarrow B_{1}=\{3,5\}$
$P_{2}=\{2,6\} \rightarrow B_{2}=\{2,3,5,6\}$
$P_{3}=\{1,3,5,7\} \rightarrow B_{3}=\{1,2,3,5,6,7\}$
$P_{4}=\{2,4,6\} \rightarrow B_{4}=\{1,2,3,4,5,6,7\}$; hence, we have $t=4$.

SOLUTIONS

A Note to Solutions of H-350, H-354 by Paul Bruckman
H-350
Although the published solution is apparently correct, it can be considerably simplified. In the course of solving H-372, it occurred to the solver that the same method of solution could have been applied to solve H-350 (but was not). As noted in the published solution, the given equation:

$$
\begin{equation*}
5 y^{2}-A x^{2}=1 \quad\left(\text { where } A \equiv 5 a^{2}+5 a+1\right) \tag{1}
\end{equation*}
$$

has general solutions

$$
\begin{align*}
& s_{n}=\frac{u^{2 n-1}-v^{2 n-1}}{2 \sqrt{A}}, y_{n}=\frac{u^{2 n-1}+v^{2 n-1}}{2 \sqrt{5}}, n=1,2, \ldots, \tag{2}\\
& \text { where } u \equiv(2 \alpha+1) \sqrt{5}+2 \sqrt{A}, \quad v \equiv(2 \alpha+1) \sqrt{5}-2 \sqrt{A}
\end{align*}
$$

Note $u v=1$. From (2), we could easily have derived the following relations:

$$
\begin{gather*}
5 y_{n} y_{n+1}-A x_{n} x_{n+1}=B \equiv 40 \alpha^{2}+40 \alpha+9 ; \tag{3}\\
x_{n+1} y_{n}-x_{n} y_{n+1}=4(2 \alpha+1) . \tag{4}
\end{gather*}
$$

Dividing (3) and (4) throughout by $y_{n} y_{n+1}$ would have yielded the following:

$$
5-A r_{n} r_{n+1}=B / y_{n} y_{n+1}, \quad r_{n+1}-r_{n}=4(2 \alpha+1) / y_{n} y_{n+1}
$$

or

$$
5-A r_{n} r_{n+1}=\frac{B}{4(2 a+1)}\left(r_{n+1}-r_{n}\right)
$$

which yields:

$$
\begin{equation*}
r_{n+1}=\frac{B r_{n}+20(2 \alpha+1)}{4 A(2 \alpha+1) r_{n}+B}, \quad \text { with } r_{1}=2 /(2 \alpha+1) . \tag{5}
\end{equation*}
$$

The expression given by (5) is a recursion of the first order (though modular rather than linear), which is considerably simpler than the cumbersome thirdorder recursion published as the solution. The published third-order recursion follows from (5) (after some computation), but not vice-versa.

H-354
The published "solution" is not a solution (or even an attempted solution) of the original problem, as submitted. The original problem asked for necessary and sufficient conditions for a solution in integers (x, y) to exist for the equation:

$$
\begin{equation*}
a x^{2}-b y^{2}=c, \tag{1}
\end{equation*}
$$

where " a, b, c are pairwise relatively prime positive integers such that $a b$ is not a perfect square. It is already known that if a solution of (1) exists, then infinitely many such solutions exist. Moreover, an explicit formula for all such solutions is known, in terms of the one known solution (if any).

In the published "solution" to the problem, as altered, Wächtel changed the notation to the following equation,

$$
\begin{equation*}
B y^{2}-A x^{2}=C \text {, } \tag{2}
\end{equation*}
$$

which in itself is not a substantive modification; however, he also indicated
that C is to be dependent on A and B. Nothing of the sort was intended by the proposer; in the original problem, a, b, and c are independently arbitrary, subject only to the conditions noted above. Moreover, Wächtel attempted construction of the solutions to particular cases. This again was not the intent of the proposer, although admittedly the construction of the minimal solution, if possible, would go a long way toward solving the problem.

The only progress made by the proposer toward solution of the original problem may be summarized as follows:
I. Necessary conditions for a solution of (1) to exist are the following, in terms of the generalized Legendre symbols:

$$
\begin{equation*}
\left(\frac{a c}{b}\right)=\left(\frac{-b c}{a}\right)=\left(\frac{a b}{c}\right)=1 \tag{3}
\end{equation*}
$$

That the conditions in (3) are not sufficient may be demonstrated from the counter-example: $a=1, b=17, c=2$, in this case, $x^{2}-17 y^{2}=2$ has no solution, yet the conditions in (3) are satisfied.
II. The construction of a minimal solution to (1) seems to depend somehow on the simple continued fraction expansion of $\sqrt{b / a}$ (or equivalently, of $\sqrt{a / b}$). It is however false, in general, that for any solution (x, y) of (1), x / y is a convergent of the simple continued fraction expansion for $\sqrt{b / a}$. Nevertheless, a finite algorithm exists for finding the minimal solution (x_{0}, y_{0}), if any, of (1). By solving the congruence

$$
\begin{equation*}
-b y^{2} \equiv c(\bmod a) \tag{4}
\end{equation*}
$$

implied by (3), and also using the inequality

$$
\begin{equation*}
0<y_{0}<\sqrt{c u_{1} / 2 b} \tag{5}
\end{equation*}
$$

where $\left(u_{1}, v_{1}\right)$ is the minimal nontrivial solution of the auxiliary equation

$$
\begin{equation*}
u^{2}-a b v^{2}=1 \tag{6}
\end{equation*}
$$

[the trivial one is $\left(u_{0}, v_{0}\right)=(1,0)$], we may determine in a finite number of trials if a solution exists. It would be far more desirable, however, to construct such a minimal solution of (1) directly, rather than by trial and error.
III. Given that $\left(x_{0}, y_{0}\right)$ is the minimal solution of (1), and (u_{n}, v_{n}) the solutions of the auxiliary equation in (6) (which latter solutions are known to exist in all cases, and for which several constructive algorithms are known), then α Ll solutions of (1) are given by:

$$
\begin{equation*}
x_{n}=x_{0} u_{n}+b y_{0} v_{n}, \quad y_{n}=y_{0} u_{n}+a x_{0} v_{n}, \quad n \in \mathbb{Z} \tag{7}
\end{equation*}
$$

Note that the solutions $\left(u_{n}, v_{n}\right)$ of (6) are given by:

$$
\begin{equation*}
u_{n}=\frac{1}{2}\left(p^{n}+q^{n}\right), \quad v_{n}=\frac{1}{2 \sqrt{a b}}\left(p^{n}-q^{n}\right), \quad n \in \mathbb{Z}, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
p=u_{1}+v_{1} \sqrt{a b}, \quad q=u_{1}-v_{1} \sqrt{a b} . \tag{9}
\end{equation*}
$$

IV. We note that $u_{-n}=u_{n}, v_{-n}=-v_{n}$ for all $n \in \mathbb{Z}$. From this it may be deduced that $x_{n}>0$ for all n, while y_{n} has the same sign as n. This eliminates trivial variations in solutions due to sign, and makes the theory more elegant.

Correction to $\mathrm{H}-382$

The left-hand side of (3) should read F_{n+2}, and the left-hand side of (4) should read F_{n+2}.

Correction to $\mathrm{H}-381$
Equation (ii) should read

$$
\begin{equation*}
\beta(2 m-1)=\sum_{i=1}^{m-1} \frac{(-)^{i+1} u^{2 i}}{2^{2 i}(2 i)!} \beta(2 m-2 i-1), \quad m \geqslant 2 . \tag{ii}
\end{equation*}
$$

Ring around the Lucas!
H-362 Proposed by Stanley Rabinowitz, Merrimack, NH
(Vol. 21, no. 4, November 1983)
Let Z_{n} be the ring of integers modulo n. A Lucas number in this ring is a member of the sequence $\left\{L_{k}\right\}, k=0,1,2, \ldots$, where

$$
L_{0}=2, L_{1}=1, \text { and } L_{k+2} \equiv L_{k+1}+L_{k} \text { for } k \geqslant 0 .
$$

Prove that for $n>14$, all members of Z_{n} are Lucas numbers if and only if n is a power of 3 .

Remark: A similar, but more complicated, result is known for Fibonacci numbers. See [1]. I do not have a proof of the above proposal, but I suspect a proof similar to the result in [1] is possible; however, it should be considerably simpler because there is only one case to consider rather than seven cases.

To verify the conjecture, I ran a computer program that examined Z_{n} for all n between 2 and 10,000 and found that the only cases where all members of Z_{n} were Lucas numbers were powers of 3 and the exceptional values $n=2,4,6,7$, and 14 (the same exceptions found in [1]). This is strong evidence for the truth of the conjecture.

Reference

1. S.A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Complete System of Residues." The Fibonacci Quarterly 9, no. 5 (1971):497.

Solution by Paul S. Bruckman, Fair Oaks, CA
We generalize and modify the definition of defectiveness indicated in [1]. Given a positive integer n, let $R_{n}=\{0,1,2, \ldots, n-1\}$ denote a complete residue class $(\bmod n)$, and consider the (periodic) sequence

$$
\left(L_{r}(\bmod n)\right)_{r=0}^{\infty}=\left(L_{r}^{\prime}\right)_{r=0}^{\infty}
$$

with elements in R_{n}. Let $k=k(n)$ denote the period of this sequence. We say n is Lucas-defective if $R_{n} \not \subset\left\{L_{0}^{\prime}, L_{1}^{\prime}, L_{2}^{\prime}, \ldots, L_{k}^{\prime}\right\}$, i.e., if there exists $j \in R_{n}$ such that $L_{i} \not \equiv j(\bmod n)$ for all $i \geqslant 0$. Let $L D$ denote the set of all Lucasdefective numbers. A comparable definition using Fibonacci numbers instead of Lucas numbers may be made, with $F D$ denoting the comparable set of $F i b o n a c c i-$ defective numbers; these were simply called defective numbers in Burr's paper [1]. Let $L D^{*}$ and $F D^{*}$ denote the complements of $L D$ and $F D$, respectively, with respect to $\mathbb{N}=\{1,2,3, \ldots\}$, i.e.,

$$
L D^{*}=\mathbb{N}-L D, \quad F D^{*}=\mathbb{N}-F D
$$

We recall the main result of Burr:
Theorem 1
$F D^{*}$ consists of the following numbers:

$$
5^{u}, 2 \cdot 5^{u}, 4 \cdot 5^{u}, 6 \cdot 5^{u}, 7 \cdot 5^{u}, 14 \cdot 5^{u}, 3^{v} \cdot 5^{u}, \quad u \geqslant 0, \quad v \geqslant 1
$$

We will establish Rabinowitz' conjecture, namely:

Theorem 2

$L D^{*}$ consists of the following numbers:

$$
1,2,4,6,7,14,3^{v}, \quad v \geqslant 1
$$

Note that 1 is (trivially) $L D^{*}$, as well as $F D^{*}$, although Rabinowitz did not specifically mention this. We will require some preliminary lemmas.

Lemma 1

If $n \in L D$, then $k n \in L D$ for all $k \in \mathbb{N}$.
Proof of Lemma 1: Since $n \in L D$, there exists an integer $j \in R$ such that $L_{i} \not \equiv j(\bmod n)$ for $a 11 i \geqslant 0$. Therefore, $L_{i} \not \equiv j(\bmod k n)$ for all $k \in \mathbb{N}$ and for all $i \geqslant 0$. Hence, $k n \in L D$ for all $k \in \mathbb{N}$.

Lemma 2
(a) $1,2,4,6,7,14 \in L D^{*}$;
(b) $5 \in L D$.

Proof of Lemma 2: This follows from a simple, but trite, tabulation of the residues of the sequences $\left(L_{r}(\bmod n)\right)_{r=0}^{k-1}$ for the various stated values of n, leading to the indicated results by inspection.

Note that Lemma 1 and Lemma 2(b) imply that no multiple of 5 can be in $L D^{*}$.

Lemma 3

$L D^{*} \subset F D^{*}$.
Proof of Lemma 3: Suppose $n \in L D^{*}$. Then there exists $j \in R_{n}$ such that $L_{j} \equiv 0(\bmod n)$. Since $\operatorname{gcd}\left(L_{j}, L_{j+1}\right)=1$, we have $\operatorname{gcd}\left(n, L_{j+1}\right)=1$; hence, L_{j+1}^{-1} $(\bmod n)$ exists. Define the sequence $\theta_{r} \equiv L_{j+1}^{-1} \cdot L_{r}(\bmod n), r=0,1,2, \ldots$. Note that the $\theta_{r}{ }^{\prime}$ s are equal to a constant integer $\left(L_{j+1}^{-1}(\bmod n)\right.$) times the $L_{r}{ }^{\prime}$ s $(\bmod n)$, and therefore satisfy the basic Fibonacci recursion. Moreover, $\theta_{j} \equiv 0$, $\theta_{j+1} \equiv 1(\bmod n)$, which are the initial values of the standard Fibonacci sequence. Hence, $\left(\theta_{r}\right)_{r=0}^{\infty}$ is the Fibonacci sequence (mod n), except in a cyclically permuted order. Since $n \in L D^{*}$, the sequence of $L_{r}{ }^{\prime}$ s contains R_{n} in some order. Since $\operatorname{gcd}\left(L_{j+1}^{-1}(\bmod n), n\right)=1$, we see that multiplying the elements of R_{n} throughout by $L_{j+1}^{-1}(\bmod n)$ regenerates R_{n} in some permuted order. Hence, $\left(F_{r}(\bmod n)\right)_{r=0}^{\infty}$ contains $R_{n}, ~ i . e ., n \in F D^{*}$. Thus, $L D^{*} \subset F D^{*}$. Combining the results of Lemmas 1,2 , and 3 , we see that $L D^{*}$ consists of all the numbers in
$F D^{*}$ (as stated in Theorem 1), except all multiples of 5, and possibly further excepting powers of 3 . It therefore suffices to prove one more result, namely:

Lemma 4

$3^{v} \in L D^{*}, \quad v \in \mathbb{N}$.
Proof of Lemma 4: Given $v \in \mathbb{N}$, let $m=3^{v-1}$. We indicate the main result of [3] below:

$$
\begin{equation*}
\alpha^{3 m} \equiv \beta^{m}, \quad \beta^{3 m} \equiv \alpha^{m}(\bmod 3 m) . \tag{*}
\end{equation*}
$$

This is an instance of an identity in the "calculus of complex residues" explained in [3], whereby we may manipulate the quantities $\alpha \equiv \frac{1}{2}(1+\sqrt{5})$ and $\beta=$ $\frac{1}{2}(1-\sqrt{5})(\bmod 3 m)$ as we would ordinarily manipulate complex numbers; in this case, however, the object $\sqrt{5}$ (rather than $\sqrt{-1}$) is "imaginary," since 5 is a quadratic nonresidue of $3 m$. Note that (*) implies $\alpha^{2 m} \equiv-\beta^{2 m}(\bmod 3 m)$, i.e., $L_{2 m} \equiv 0(\bmod 3 m)$. A1so, we have

$$
\alpha^{2 m+1} \equiv \beta^{2 m-1}, \quad \beta^{2 m+1} \equiv \alpha^{2 m-1}(\bmod 3 m),
$$

which implies $F_{2 m+1} \equiv-F_{2 m-1}(\bmod 3 m)$. Therefore, $F_{2 m+1} \equiv F_{2 m}-F_{2 m+1}(\bmod 3 m)$, or

$$
\begin{equation*}
F_{2 m} \equiv 2 F_{2 m+1}(\bmod 3 m) . \tag{**}
\end{equation*}
$$

Since $\operatorname{gcd}\left(F_{r}, F_{r+1}\right)=1$ for all r, we must therefore have $\operatorname{gcd}\left(F_{2 m}, 3 m\right)=1$; hence, $F_{2 m}^{-1}(\bmod 3 m)$ exists. The rest of the proof is similar to that of Lemma 3. Define the sequence $\Psi_{r} \equiv 2 F_{2 m}^{-1} F_{r}(\bmod 3 m), r=0,1,2, \ldots$. Then the Ψ_{r}^{\prime} 's satisfy the Fibonacci recursion. Moreover, $\Psi_{2 m} \equiv 2$ and $\Psi_{2 m+1} \equiv 1(\bmod 3 m)$, using (**) ; these are the initial values of the Lucas sequence. Thus, $\left(\Psi_{r}\right)_{r=0}^{\infty}$ is the Lucas sequence (mod $3 m$), except in a cyclically permuted order. From Theorem $1,3 m \in F D^{*}$; hence, the sequence $\left(F_{r}(\bmod 3 m)\right)_{r=0}^{\infty}$ contains $R_{3 m}$ in some permuted order. Since $\operatorname{gcd}\left(2 F_{2 m}^{-1}(\bmod 3 m), 3 m\right)=1$, multiplying the elements of $R_{3 m}$ throughout by $2 F_{2 m}^{-1}(\bmod 3 m)$ regenerates $R_{3 m}$ in some permuted order; hence, $3 m \in L D^{*}$. Q.E.D.

This completes the proof of Theorem 2 (Rabinowitz' Conjecture).

References

1. S.A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Complete System of Residues." The Fibonacci Quarterly 9, no. 5 (1971):497-504.
2. A. P. Shah. "Fibonacci Sequence Modulo m." The Fibonacci Quarterly 6, no. 2 (1968):139-41.
3. P. S. Bruckman. "Some Divisibility Properties of Generalized Fibonacci Sequences." The Fibonacci Quarterly 17, no. 1 (1979):42-49.

Also solved by L. Somer.

