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PROBLEMS PROPOSED IN THIS ISSUE 

H-385 Proposed by M. Wachtel, Zurich, Switzerland 

Solve the following system of equations: 

T- Uf(n) + Vg\n) " 3 • UfM Vg(n) = 1; 

H-386 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Define the multiple-valued Fibonacci function mF : C ~> C as follows: 

1. mF(z) = —(exp Lz - exp L'z), z G C, m E Z, 

where L = log a, a = %(1 + /5) , L1 = {2m + l)ii\ - Ly and "log" denotes the 
principal logarithm. 

a. Show that F{n) = Fn for all integers 777 and n. 

b. Prove the multiplication formula 

2. 11 mF(k + -) = 5~h(n~l)Fnk+r, where n9 ks r are integers with 0 < r < n. 
m = 0 \ n / 

c. With m fixed, find the zeros of mF. 

H-387 Proposed by Lawrence Somer, Washington, D.C. 

L§t {wn}n=Q be a second-order linear integral recurrence defined by the 
recursion relation 

wn+2 = awn+1 + bwns 

where b ^ 0. Show the following: 

(i) If p is an odd prime such that p \ b and w\ - wQW2 is a quadratic non-
residue of p, then 

p )( w2n for any n ^ 0. 
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(ii) If p is an odd prime such that (-b)(w\ - WQW2) is a quadratic nonresidue 
of p, then 

v%win+i f o r a n y n ^ °-
(iii) If p is an odd prime such that -b is a nonzero quadratic residue of 

and w1 - WQW2 is a quadratic nonresidue of p, then 

p j' &;n for any n > 0. 

H-388 Proposed by Piero Filipponi, Rome, Italy 

This problem arose in the determination of the diameter of a class of lo-
cally restricted digraphs [1], 

For a given integer n > 2, let Pl = {p l x, pl 2, ..., pljfc } be a nonempty 
(i.e. 5 ki ^ 1) increasing sequence of positive integers such that pl k < n - 1. 
Let P2 = {p2 p p2 2 > - . 5 p2 k 5" ̂ e t n e increasing sequence containing all non-
zero distinct values given by p. . + pl • (mod n) (t, j = 1, 2, ..., &i) . In 
general let P^ = {p^ . , ph 2 , . .'. ,p, fc } be the increasing sequence containing 
all nonzero distinct values given by p^_ \ i + V\ -• (mod n) (i = 1, 2, . .., kn_ ^ 
j = 1, 2, . .., /cx). Furthermore, let Bm (m = 1, 2, ...) be the increasing se-
quence containing all values given by 

m 

U Pj • 
J= 1 

Find, in terms of n, pl l9 ..., px ^ , the smallest integer t such that 
5t = {1, 2, ..., n - 1}. 

Remark: The necessary and sufficient condition for t to exist (i.e., to be 
finite) is given in [1]: 

gcd(n, plsl , ..., pl)ki ) = 1. 

In such a case we have 1 < £ < n - 1. It is easily seen that 

kx = 1 <N=> £ = n - 1 

fcx = n - 1 <==> £ = 1; 

furthermore, it can be conjectured that either t = n - 1 or 1 < t < [n/2]. 

Reference 

1. P. Filipponi. "Digraphs and Circulant Matrices." Rioeroa Operative^ no. 17 
(1981):41-62. 

An Example 

n = 8 Px = {3, 5} -> Bx = {3, 5} 

P2 = {2, 6} + 52 = {2, 3, 5, 6} 

P3 = {1, 3, 5, 7} + 53 = {1, 2, 3, 5, 6, 7} 

P4 = {2, 4, 6} -> Bh = {1, 2, 3, 4, 5, 6, 7}; hence, we have £ = 4, 
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SOLUT8QNS 

A Note to Solutions of H-350, ^35** by Paul Bruckman 

H-350 

Although the published solution is apparently correct, it can be consider-
ably simplified. In the course of solving H-372, it occurred to the solver 
that the same method of solution could have been applied to solve H-350 (but 
was not). As noted in the published solution, the given equation: 

5y2 - Ax2 = 1 (where A = 5a2 + 5a + 1) (1) 

has general solutions 
u2n-l _ v2n-l rfn - 1 + ^ n - 1 

Sn = 9 y ^ = _ , W = 1 , 2 , . . . , 
2y/A iJl (2) 

where u = (2a + l)i/5 + 2V£, t; = (2a + 1)^5 - 2A/Z. 

Note uv = 1. From (2), we could easily have derived the following relations: 

5ynyn+i - A v n + i = B E 4 0 ^ 2 + 4 0 a + 9 ; <3> 

^n + l^/n " Xn2/n + l = 4 ( 2 a + X ) • ( 4 > 

Divid ing (3) and (4) th roughout by ynyn + 1 would have y i e l d e d t h e fo l l owing : 

5 - Arnrn + 1 = B/ynyn+l9 rn + 1 - vn = 4(2a + l)/ynyn + 1, 
or 

5 ^ p n + i 4 ( 2 a + l ) ( ^ + 1 r n )' 

which yields: 

Brn + 20(2a + 1) 
r»+i = 4A(2a + l)rw + B' w i t h Pi = 2 / ( 2 a + 1}' (5) 

The expression given by (5) is a recursion of the first order (though modular 
rather than linear), which is considerably simpler than the cumbersome third-
order recursion published as the solution. The published third-order recursion 
follows from (5) (after some computation), but not vice-versa. 

H-354 

The published "solution" is not a solution (or even an attempted solution) 
of the original problem, as submitted. The original problem asked for neces-
sary and sufficient conditions for a solution in integers (x, y) to exist for 
the equation: 

ax2 - by2 = c, (1) 

where a, b, a are pairwise relatively prime positive integers such that db is 
not a perfect square. It Is already known that if a solution of (1) exists, 
then infinitely many such solutions exist. Moreover, an explicit formula for 
all such solutions is known, in terms of the one known solution (if any). 

In the published "solution" to the problem, as altered, Wachtel changed the 
notation to the following equation, 

By2 - Ax2 = C, (2) 

which in itself is not a substantive modification; however, he also indicated 
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that C is to be dependent on A and B. Nothing of the sort was intended by the 
proposer; in the original problem, a, bs and c are independently arbitrary, 
subject only to the conditions noted above. Moreover, Wachtel attempted con-
struction of the solutions to particular cases. This again was not the intent 
of the proposer, although admittedly the construction of the minimal solution, 
if possible, would go a long way toward solving the problem. 

The only progress made by the proposer toward solution of the original 
problem may be summarized as follows: 

I. Necessary conditions for a solution of (1) to exist are the following, in 
terms of the generalized Legendre symbols: 

( f ) - ( i2) - ( ¥ ) - • • <» 
That the conditions in (3) are not sufficient may be demonstrated from the 
counter-example: a = l , 2? = 17, <2 = 2,in this case, x2 - I7y2 = 2 has no solu-
tion, yet the conditions in (3) are satisfied. 

II. The construction of a minimal solution to (1) seems to depend somehow on 
the simple continued fraction expansion of vb/a (or equivalently, of Va/b) . It 
is however false9 in general, that for any solution (x, y) of (1), x/y is a 
convergent of the simple continued fraction expansion for Vbja. Nevertheless, 
a finite algorithm exists for finding the minimal solution (x0$ z/0), if any, of 
(1). By solving the congruence 

-by2 = c (mod a) (4) 

implied by (3), and also using the inequality 

0 < yQ < Vcu±/2bs (5) 

where (uls V±) is the minimal nontrivial solution of the auxiliary equation 

u2 - abv2 = 1, (6) 

[the trivial one is (uQ, vQ) = (1, 0)], we may determine in a finite number of 
trials if a solution exists. It would be far more desirable, however, to con-
struct such a minimal solution of (1) directly, rather than by trial and error. 

III. Given that (xQ, y0) is the minimal solution of (1), and (un, vn) the so-
lutions of the auxiliary equation in (6) (which latter solutions are known to 
exist in all cases, and for which several constructive algorithms are known), 
then all solutions of (1) are given by: 

xn = xQun + byQvnS yn = y0un + axQvnS n € Z. (7) 

Note that the solutions (un$ Vn) of (6) are given by: 

un = ~(pn + qn) , vn = ~^—{pn - qn) , n G Z, (8) 
1 iJab 

where 
p = ux + v1^/abs q = u1 - v1/ab, (9) 

IV. We note that u.n = un, v_n = -Vn for all n E Z. From this it may be de-
duced that xn > 0 for all n, while yn has the same sign as n, This eliminates 
trivial variations in solutions due to sign, and makes the theory more elegant. 

•k 
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Correction to H-382 

The left-hand side of (3) should read Fn + 2, and the left-hand side of (4) 
should read Fn+2. 

Correction to H-381 

Equation (ii) should read 

(ii) 3(2m - 1) = £ - ^ ^— $(2m - 2i - 1) , m > 2. 
i = i 22i(2i)l 

Ring around the Lucas! 

H-362 Proposed by Stanley Rabinowitz, Merrimack, NH 
(Vol. 21, no. 4, November 1983) 

Let Zn be the ring of integers modulo n. A Lucas number in this ring is a 
member of the sequence {Lk}, k = 0, 1, 2, . .., where 

L0 = 29 L1 = 1, and Lk+2 = Lk + 1 + Lk for k ^ 0. 

Prove that for n > 14, all members of Zn are Lucas numbers if and only if n is 
a power of 3. 

Remark: A similar, but more complicated, result is known for Fibonacci numbers. 
See [1]. I do not have a proof of the above proposal, but I suspect a proof 
similar to the result in [1] is possible; however, it should be considerably 
simpler because there is only one case to consider rather than seven cases. 

To verify the conjecture, I ran a computer program that examined Zn for all 
n between 2 and 10,000 and found that the only cases where all members of Zn 
were Lucas numbers were powers of 3 and the exceptional values n = 2, 4, 6, 7, 
and 14 (the same exceptions found in [1]). This is strong evidence for the 
truth of the conjecture. 

Reference 

1. S. A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Complete 
System of Residues." The Fibonacci Quarterly 9, no. 5 (1971):497. 

Solution by Paul S. Bruckman, Fair Oaks, CA 

We generalize and modify the definition of defectiveness indicated in [1]. 
Given a positive integer n9 let Rn = {0, 1, 2, . .., n - 1} denote a complete 
residue class (mod n), and consider the (periodic) sequence 

(Lr (mod n))ZmQ = (^)r = 0 
with elements in Rn. Let k = k(n) denote the period of this sequence. We say 
n is Lucas-defective if Rn <t {L'Qi L[, Lf

2, ..., L{}9 i.e., if there exists j E Rn 
such that Li t j (mod n) for all i > 0. Let LD denote the set of all Lucas-
defective numbers. A comparable definition using Fibonacci numbers instead of 
Lucas numbers may be made, with FD denoting the comparable set of Fibonacci-
defective numbers; these were simply called defective numbers in Burrrs paper 
[1]. Let LD* and FD* denote the complements of LD and FDS respectively, with 
respect to IN = {1, 2, 3, . ..}, i.e., 
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LD* =]N - LD9 FD* =W - FD. 
We recall the main result of Burr: 

Theorem 1 

FD* consists of the following numbers: 

5M, 2° 5W, 4*5W, 6»5", 7-5", 14 • 5U
5 3V « 5U

s u>0s v > l . 

We will establish Rabinowitz* conjecture, namely: 

Theorem 2 

LD* consists of the following numbers: 

1, 2, 4, 6, 7, 14, 3y, y > 1. 

Note that 1 is (trivially) LD*, as well as £!D*, although Rabinowitz did not 
specifically mention this. We will require some preliminary lemmas. 

Lemma 1 

If ft E LD, then kn E LD for all fcGE. 

Proof of Lemma 1 : Since n E LD, there exists an integer j E R such that 
L^ ^ j (mod n) for all i > 0. Therefore, Li $ j (mod kn) for all fc E IN and for 
all i > 0. Hence, kn E LZ? for all k E3N. 

Lemma 2 

(a) 1, 2, 4, 6, 7, 14 E LP*; 

(b) 5 E LP. 

Proof of Lemma 2: This follows from a simple, but trite, tabulation of the 
residues of the sequences (Lr (mod ft))£~J for the various stated values of n, 
leading to the indicated results by inspection. t 

Note that Lemma 1 and Lemma 2(b) imply that no multiple of 5 can be in LD . 

Lemma 3 

LD* C FD*. 

Proof of Lemma 3- Suppose n ELD*. Then there exists j E Rn such that 
Lj E 0 (mod n). Since gcd(LJ-, £J-M) = 1 J w e have gcd(ft, Lj + i) = 1; hence, LJ+i 
(mod n) exists. Define the sequence Qr E £"+]_ • Lr (mod ft), r = 0, 1, 2, ... . 
Note that the 0pfs are equal to a constant integer (LJ^ (mod ft)) times the L^'s 
(mod ft) , and therefore satisfy the basic Fibonacci recursion. Moreover, 0j E 0, 
0.+1 E 1 (mod ft), which are the initial values of the standard Fibonacci se-
quence. Hence, (0P)p=o is the Fibonacci sequence (mod ft), except in a cycli-
cally permuted order. Since n E LD* s the sequence of Lr's contains Rn in some 
order. Since gcd(L^ii (mod ft), ft) = 1, we see that multiplying the elements of 
Rn throughout by L-\1 (mod ft) regenerates Rn in some permuted order. Hence, 
(Fr (mod ft) ) ^ = Q contains Rn, i.e., n E FD*. Thus, LD* E FD*, Combining the 
results of Lemmas 1, 2, and 3, we see that LD* consists of all the numbers in 
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FD* (as stated in Theorem 1), except all multiples of 5, and possibly further 
excepting powers of 3. It therefore suffices to prove one more results namely: 

Lemma k 

3V G LD*, VG IN. 

Proof of Lemma k: Given y E I , let m = 3U_1. We indicate the main result 
of [3] below: 

a3"7 = 3m, 33w = am (mod 3m). (*) 

This is an instance of an identity in the "calculus of complex residues" ex-
plained in [3], whereby we may manipulate the quantities a E %(1 + \/5) and (3 = 
h(l - A ) (mod 3m) as we would ordinarily manipulate complex numbers; in this 
case, however, the object A/5 (rather than v-1) is "imaginary," since 5 is a 
quadratic nonresidue of 3m. Note that (*) implies a2m E -$2m (mod 3m), i.e., 
L2m E 0 (mod 3m). Also, we have 

a2m+l = e 2 m - l s ^ + 1 = ^ - 1 ( m o d 3 ^ 

which implies F2m+i- ~F2m-i (mod 3m) • Therefore, F2m+1 E F2m - ̂ 2w+i (mod 3m) 5 
or 

F2m = 1F2m+l < m o d 3 m > - (**) 

Since gcd(FP, Fr+1) = 1 for all r, we must therefore have gcd(F2mS 3m) = 1; 
hence, F~* (mod 3m) exists,. The rest of the proof is similar to that of Lemma 
3. Define the sequence ^r E 2F^Fr (mod 3m), r = 0, 1, 2, ... . Then the ¥r

fs 
satisfy the Fibonacci recursion. Moreover, ¥2m E 2 and 2̂77?+1 = 1 (m°d 3m), 
using (**); these are the initial values of the Lucas sequence. Thus, (¥r)r = o 
is the Lucas sequence (mod 3m), except in a cyclically permuted order. From 
Theorem 1, 3m G FD*; hence, the sequence (Fr (mod 3m))^=0 contains R3m in some 
permuted order. Since gcd^F^ (mod 3m), 3m) = 1, multiplying the elements of 
R3m throughout by 2F^ (mod 3m) regenerates R$m in some permuted order; hence, 
3m G LD*. Q.E.D. 

This completes the proof of Theorem 2 (Rabinowitz1 Conjecture). 

References 

1. S. A. Burr. "On Moduli for Which the Fibonacci Sequence Contains a Complete 
System of Residues." The Fibonacci Quarterly 9, no. 5 (1971):497-504. 

2. A. P. Shah. "Fibonacci Sequence Modulo m." The Fibonacci Quarterly 6, no. 2 
(1968):139-41. 

3. P. S. Bruckman. "Some Divisibility Properties of Generalized Fibonacci 
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Also solved by L. Somer* 
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