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INTRODUCTION 

A partition of a positive integer n is defined as a way of writing n as a 
sum of positive integers. Two such ways of writing n in which the parts merely 
differ in the order in which they are written are considered the same parti-
tion. We shall denote by p(n) the number of partitions of n. Thus, for exam-
ple, since 5 can be expressed by 

5, 4 + 1 , 3 + 2 , 3 + 1 + 1 , 2 + 2 + 1 , 2 + 1 + 1 + 1 , and 1 + 1 + 1 + 1 + 1 , 

we have p(5) = 7. 
The function p(n) is referred to as the number of unrestricted partitions 

of n to make clear that no restrictions are imposed upon the way in which n is 
partitioned into parts. In this paper, we shall concern ourselves with certain 
restricted partitions, that is, partitions in which some kind of restriction is 
imposed upon the parts. Specifically, we shall consider identities valid for 
all positive integers n of the general type 

p\ri) = p"(n), (1) 

where p r(n) is the number of partitions of n where the parts of n are subject 
to a first restriction and p"(n) is the number of partitions of n where the 
parts of n are subject to an entirely different restriction. 

The most celebrated identity of this type is due to Euler [4], who discov-
ered it in 1748. 

Theorem 1 (Euler) 

The number of partitions of n into distinct parts is equal to the number of 
partitions of n into odd parts. 

Thus, for example, the partitions of 9 into distinct parts are 

9, 8 + 1 , 7 + 2 , 6 + 3 , 6 + 2 + 1 , 5 + 4 , 5 + 3 + 1 , 4 + 3 + 2 , 

that is, there are 8 such partitions, and the partitions of 9 into odd parts are 

9, 7 + 1 + 1 , 5 + 3 + 1 , 5 + 1 + 1 + 1 + 1 , 3 + 3 + 3 , 3 + 3 + 1 + 1 + 1 , 
3+ 1+ •• • + 1, 1+ 1+ • • •+ 1, 

so that there are also 8 partitions of 9 into odd parts. 
For a proof of this theorem by combinatorial methods, see [6], and by means 

of generating functions, see [2] or [3]. 
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In [2], Alder has given a survey of the existence and nonexistence of gen-
eralizations of Eulerfs partition identity and, in [3], he has shown how to use 
generating functions to discover and prove the existence and the nonexistence 
of certain generalizations of this identity. 

The use of generating functions, however, is by no means the only method 
for discovering partition identities or for proving their existence or nonexis-
tence. Other methods, particularly those likely to produce positive results, 
that is, suggesting the existence of new partition identities, need, therefore, 
to be developed. Other points of view in looking at the possibility of the 
existence of such identities need to be encouraged. One such method is used in 
this paper. It is used to show that a certain generalization of a known parti-
tion identity cannot exist. It may well be, however, that as of yet unthought 
of techniques may prove successful in discovering a generalization. 

In 1974 D. R. Hickerson [5] proved the following generalization of Eulerfs 
partition identity. 

Theorem 2 (Hickerson) 

If f(r, ri) denotes the number of partitions of n of the form b0 + b1 + b2 
+ ••• + bs, where, for 0 < £ < s - 1, bi > r^i + i> and g(rs ri) denotes the num-
ber of partitions of n where each part is of the form 1 + r + r2 + • • e + ri for 
some i ^ 0, then 

f(r9 ri) = g(r, ri) . (2) 

Thus, for example, for r = 2, the partitions of 9 of the first type are 

9, 8+1, 7+2, 6+3, 6 + 2 + 1 , 

so that /(2, 9) = 5 , and the partitions of 9 of the second type, that is, where 
each part is chosen from the set {l, 3, 7, .. . } , are 

7 + 1 + 1 , 3 + 3 + 3 , 3 + 3 + 1 + 1 + 1 , 3 + 1 + •• • + 1 , and 1 + 1 + •• • + 1 , 
so t h a t a l s o g(2, 9) = 5 . 

Hickerson gave a proof of this theorem, both by combinatorial methods and 
by means of generating functions. 

In this paper we are addressing the question: Do there exist identities of 
the type given by Theorem 2, where the inequality b^ ^ vbi + 1 is replaced by 
bi > rbi+12 

THE NONEXISTENCE OF CERTAIN TYPES OF PARTITION IDENTITIES 

OF THE EULER TYPE 

We shall consider the question stated above in the following more specific 
form: If /(p, ri) denotes the number of partitions of n of the form b0 + b± + 
••• + bs9 where, for 0 < i < s - 1, bt > rbi+19 and g(r3 ri) denotes the number 
of partitions of n, where each part is taken from a set of integers Sr, for 
which r do there exist sets Sv such that f(r9 ri) = g(r9 n)1 

We know, of course, that for v = 1, there exists such a set, since Euler*s 
partition theorem states that S1 is the set of all positive odd integers. The 
question—-whether there exist other values of r for which there exist sets Sr9 
so that (2) holds for all positive integers n—was posed at an undergraduate 
seminar on Number Theory by the first two authors in the Winter quarter 1983, 
and was answered with proof for all integers v > 2 by Jeffrey Lewis, namely as 
follows: 
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Theorem 3 (Lewis) 

The number f(v9ri) of partitions of n of the form bQ + bx +• • • + bS9 where, 
for G < i < s - 1, bi> rbi + 19 r a positive integer, is not, for all n9 equal 
to the number of partitions of n into parts taken from any set of integers what-
soever unless r - 1. 

Proof of Theorem 3- "We shall prove this theorem by contradiction. Let us 
assume that for some integer p > 2 there exists a set Sr of positive integers— 
denote the number of partitions of n into parts taken from that set by g(r9 ri) — 
for which f(rs n) = g(r9 n) for all n. 

Since f(r9 1) = 1, we see that 1 E Sr [otherwise, g(r9 1) = 0]. Since 
f(rs 2) = 1 , it follows that 2 <£ Sr [otherwise, g(r9 2) = 2 ] . Since /(p, 3) = 
f(r> 4) = • • • = f(r9 x> + 1) = 1, we conclude that 3 £ SV9 4 £ Sr> . .., r + 1 € Sr. 

Now f(r9 r+ 2) = 2, since the partitions of r + 2 for which bi > rbi + 1 are 
(p+2) and (p+l)+l. It follows that p + 2 E 5r [otherwise, g(r9 p+2) = 1). 

Thus, we have verified the entries in Table 1 up to n - r+ 2. We will now 
complete the construction of this table. 

Table 1. Determination of the Elements of Sr for p an Integer > 2 

n 

1 
2 
3 

p + 
p + 
p + 

2P + 
2P + 
2P + 

1 
2 
3 

2 
3 
4 

/ ( • 

p, n) 

1 
1 
1 

1 
2 
2 

2 
3 
3 

n 
, n) if 

0 
1 
1 

1 
1 
2 

2 
2 
4 

#(p 
n 
, n) if 
E £,, 

1 
2 
2 

2 
2 
3 

3 
3 
5 

Conclusion 

1 E S 
2 £ 5 
3 f 5 

p + 1 £ 5 
p + 2 E 5 
p + 3 € S 

2r + 2 £ S 
2r + 3 E S 
Contradiction 

Next we determine the least value of n for which f(r9 n) = 3. This occurs 
if n is of either of the forms 

n = b0 + b1 + 1 w i th Z?0 > PZ?X and b± > r 

or 

n = Z?0 + 2 w i t h Z?0 > 2 P 0 

The l e a s t n fo r which t h e f i r s t can occur i s 

n = (P2 + P + 1) + ( P + 1) + 1 = P 2 + 2 p + 3 e 

The least n for which the second can occur is 

n = (2P + 1) + 2 = 2P + 3. 

Since 2P + 3 < r2 + 2v + 3 for all positive P , it follows that n = 2P + 3 is 
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the least value of n for which f(r9 n) = 3. In that case, the partitions of 
2P + 3 for which bi > rbi + 1 are (2r + 3) , (2r+ 2) + 1, (2r + 1) + 2. Now, since 
thus far only 1 G 5 r and r + 2 E Sr9 it follows that there are only two parti-
tions of 2P + 3 into parts taken from that set, namely 

(r + 2) + 1 + •-• + 1 and 1 + 1 + • • • + 1, 

so that we need 2v + 3 E Sr in order to make g(v9 2r+ 3) = 3. 
Now f(r9 2P+4) = 3, since the only partitions of 2v + 4, with b^ > r^ + 1, 

are (2r+4) , (2r+3) + 1, (2P+2) + 2. (Note that it is here where we are us-
ing the fact that r > 2.) On the other hand, the partitions of 2v + 4 into 
parts taken from the set {1, p+2, 2r+ 3} are 

(2r+3)+l, (r+ 2) + (r+ 2), (r+2) + 1 + 1 + • • • + 1, 1+1+--- + 1, 

so that g(r9 2r + 3) = 4 if 2r + 4 <£ £P and #(r, 2r + 3) = 5 if 2r + 4 E £r, which 
is a contradiction. 

The question arises whether Theorem 3 is true also for all values of v > 1. 
We have some partial answers to this question. 

Theorem k 

The nonexistence of sets Sr given in Theorem 3 also applies to all v in any 
of the intervals N < r < N + 1/2, where N is any integer > 2. 

Proof of Theorem 4: This proof is identical to that for Theorem 3, except 
that, in the construction of Table 1, the entries in the columns for n and the 
conclusions have to be changed by replacing r in every case by [r], the grest-
est integer in ra Note that the condition that v < N + 1/2 is needed in the 
determination of the partitions of 2[r] + 3 with b^ > rbi+l9 which are 

(2[r] + 3), (2[p] + 2) + 2, and (2[r] + 1) + 2, 

the latter satisfying the inequality, since 

2[r] + 1 = 2N + 1 = 2(N + j \ > 2r. 

Now, for values of r for which N + (1/2) < r < N + 1, we have a method for 
proving the nonexistence of Sv for certain intervals, but have no method which 
will give a conclusion valid for all such intervals. We illustrate this method 
for intervals in the range 2.50 < r < 3.00. 

First we use the same method used in the construction of Table 1 to deter-
mine the elements of Sv for r = 2.50. (See Table 2.) 

Since a contradiction is obtained for n = 20, it follows that for r = 2.50 
no set Sr can exist for which f(r3 ri) = g(r9 n) for all positive integers n. 

Next we note that Table 2 applies for all r with 2.50 < r < x/y9 where x/y 
is the least rational number > 2.50 for which both x and y appear as parts in 
a partition counted by f(rs n) in Table 2; that is, we need to find the least 
rational number x/y > 2.50 for which x + y < 20. This clearly is 13/5, since 
13 + 5 is a partition of 18 and, therefore, Table 2 would not be applicable for 
r = 13/5 because the partition of 18 = 13 + 5 would not satisfy 13 > 5r for 
v = 13/5. 

Thus, Table 2 is applicable for all r with 2.50 < r < 13/5, and the nonex-
istence of the sets Sr follows for all r in this interval. 
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Table 2. Determination of the Elements of Sr for v = 2.50 

g(r, n) if g(n, r) if 
n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

f(r, n) 

1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
4 
5 
5 
5 
6 
7 
7 
8 
9 
9 

n & S 

0 
1 
1 
1 
2 
2 
2 
3 
3 
3 
3 
5 
5 
5 
6 
7 
7 
7 
9 
10 

n E £ 

1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
4 
6 
6 
6 
7 
8 
8 
8 
10 
11 

Conclusio 

1 E S 
i t s 
3 g S 
4 E 5 
5 £ £ 
6 g S 
1 £ S 
8 (£ S 
9 £ S 
10 £ S 
11 e 5 
12 g 5 
13 g 5 
14 g 5 
15 g 5 
16 g 5 
17 g S 
18 E 5 
19 g 5 

Contradict: 

We now construct, by programming on a computer, a table similar to Table 2 
for r = 13/5 (not shown here), obtaining a contradiction for n = 52. Next, we 
note that this table applies to all r with 13/5 < r < x/y, where x/y is the 
least rational number > 13/5 for which x + y < 52. This clearly is 34/13, so 
that this table is applicable for all v with 13/5 < r < 34/13. Constructing a 
table similar to Table 2 for r = 34/13, we obtain a contradiction for n = 136 
and find that this table is valid for all v with 34/13 < r < 89/34. Then, con-
structing the appropriate table for r = 89/34, we were unable to obtain a con-
tradiction on the computer in the time available, that is, for n < 181. 

Though we were unable to obtain a contradiction for r = 89/34 = 2.6176..., 
we were able to obtain one for v = 2.62, namely for n - 90 and, using the pre-
viously described method, to determine that this table is valid for all v with 
2.62 < v < 21/8. Then, considering v> 21/8, we were able to obtain contradic-
tions for all v < 32/11 = 2.909... for the values of n indicated in Table 3. 

For values of P ) 32/11, the corresponding tables again became so long that 
the time available on the computer to arrive at a contradiction was exceeded; 
thus, we have no conclusions for 32/11 ^ r < 3. 

For values of r between 1 and 2, the smallest value of r we considered was 
v = 1.08, for which we obtained a contradiction for n = 54. Using the same 
method as used for values of v in the interval 2.50 < v < 32/11, it was possi-
ble to prove the nonexistence of Sr for all r in the short interval 1.08 < r < 
25/23 = 1.0869... . 

To obtain results valid for larger intervals, we started with r = 1.25 and 
proved the nonexistence of Sr for all r in the interval 1.25 < r < 23/12 = 
1.9166..., as indicated in Table 4. 
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Table 3- The Nonexistence of ST for 2.50 < r < 89/34 = 2.6176... 
and 2.62 < r < 32/11 = 2.909... 

Interval Value of n for Which Contradiction Occurs 

2.50 < v < 13/5 
13/5 < v < 34/13 

34/13 < v < 89/34 
89/34 < v < 55/21 
55/21 < v < 21/8 
21/8 < v < 8/3 
8/3 < r < 11/4 
11/4 < r < 14/5 
14/5 < v < 11 lb 
17/6 < v < 20/7 
20/7 < r < 23/8 
23/8 < v < 26/9 
26/9 < v < 29/10 
29/10 < v < 32/11 

20 
52 
136 

No concli 
90 
38 
17 
21 
26 
30 
34 
48 
44 
48 

Table k. The Nonexistence of Sr for 1.25 < r < 23/12 = 1.9166... 

Interval Value of n for Which Contradiction Occurs 

1.25 < r < 9/7 
9/7 < r < 4/3 
4/3 < v < 7/5 
7/5 < r < 3/2 
3/2 < v < 5/3 
5/3 < r < Ilk 
Ilk < v < 9/5 
9/5 < v < 11/6 
11/6 < v < 13/7 
13/7 < v < 15/8 
15/8 < r < 17/9 
17/9 < v < 19/10 
19/10 < r < 21/11 
21/11 < r < 23/12 

18 
18 
14 
14 
10 
18 
18 
21 
24 
28 
33 
36 
39 
42 

For values of v < 1.25, as indicated above, the intervals for which a table 
similar to Table 2 is valid become very small. Considering the values of v = 
1.08, 1.09, ..., 1.20, separately, we obtained a contradiction for each of them. 
For values of r close to 1, the time available on the computer to arrive at a 
contradiction was exceeded. This is not surprising, because we know that, for 
r = 1, we have the Euler identity and, therefore, no contradiction can be ob-
tained. For values of r in the interval 1 < v < 1.25, except for those listed 
above and for those in the interval 23/12 < r < 2, we have no conclusions. 

It is an interesting question whether Theorem 3 can be proved by a method 
valid for all nonintegral values of r > 1. 
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The authors are greatly indebted to M. Reza Monajjemi for developing the 
program needed to construct Tables 3 and 4, and for cheerfully spending many 
hours in helping to prepare them. 
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