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For a > 0, the sequence 

a, aa, a(aa)5 ..., (1) 

is convergent if and only if a E I = [e~e , el'e]. This result, which was known 
to Euler [5], and which has been rediscovered frequently, is capable of gener-
alization in various directions (see [6] for a wide-ranging survey). For in-
stances Barrow [2] showed that if an E J, n = 1, 2, . .., then the sequence 

al9 a**, a ^ , ..., (2) 

is convergent also. 
More recently [1], we have observed that if a is a complex number and if 

az = exp[s log a], {z E €), 

where the principal value of the logarithm is taken, then the sequence (1) con-
verges if a lies in 

R = {e*e"' : \t\ < 1}. 

On the boundary of R however, and in its exterior, both convergence and diver-
gence may occur. 

The sequence (2) was shown by Thron [7] to be convergent if | log an\ ^ 1/e, 
n - 1, 2, ..., but we do not know whether this holds in general if anE R, n = 
1, 2, ... . 

The aim of the present note is to give a complete discussion of the behav-
iour of real sequences of the form 

a, a , a <
b"\ a<fc(a>>, .... (a, b> 0). (3) 

Such a sequence is of course a special case of (2), and so Barrow1s result 
guarantees convergence for (a5b) E J x J , though the full region of convergence 
is actually much larger. The same problem was discussed and partially solved 
by Creutz and Sternheimer'[4], who also presented considerable computational 
evidence concerning the region of convergence. 

With a, b > 0, we let $(x) = abx(= a^*>) , -°°  < x< °°, and 

<j>n + 10c) = <M>"(aO = §no$(x), (n = 1,-2, . . . ) . 

The sequence (3) under consideration is then of the form 

<()(0), <KD> *2(0), <j>2(i), ... . 
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Theorem 

The following statements are equivalent: 

(i) Both 

lira cf)n(0) and lim (J)M(l) 

exist finitely and are equal. 

(ii) The function cf> has precisely one fixed point a such that 

|<|>'(e) | < 1. 

(iii) We can write 

log a = se~t and log b = te~s, (|st| < 1), 

in a unique way. 

(4) 

The set of points (log a, log £>) defined by statement (iii) is shaded in 
Figure 1 for the reader's convenience. We shall discuss it in more detail once 
the theorem is proved. Notice that [-e> He] x [~e5 l/e] lies in the shaded 
set, as is implied by BarrowTs result. 

log b 

Figure 1 

The behavior of the sequence at the remaining points, which will become clear 
in the course of the proof, is indicated belows 

when (log a, log b) E E1, we have 

lim c()(0) = lim cf)n(l) = oo; 

when (log as log b) E E2 U Eh, we have 

lim cf)2n(0) = lim (j)2n+1(l) + lim (j)2n+1(0) = lim (f)2n(l) < °°s 
n -v oo n-*° °  72+° °  ft -»- oo 

when (log a, log 2?) E S3J we have 

lim c()(0) < lim (f)(1) < 1. 
w -> oo n n -> oo n 

The equivalence of statements (ii) and (iii) is a special case of the fol-
lowing lemma. 
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Lemma 1 

There is a one-to-one correspondence between the fixed points c = es of <j), 
such that |cj)f(c)| < 1, and the representations of (log a, log b) in the form 
(4). 

Proof: To prove the lemma, note that 

G = ah° = exp(exp(c log b)log a) 

if and only if c = es, where 

s = exp(c log Mlog a, 

and s is of this form if and only if we can write 

log a - se~t and log 2? = te~s . 

Since we then have 

cj)'(e) = a^ Z?c log a log 2? = c exp(c log Z?)log a log b = st, 

the proof of the lemma is complete. 

We now show that statements (i) and (ii) are equivalent. First we assume 
that a, b > 1 so that $ is increasing. Since 

<)>"(*) = abXbx log a(log b)2(l + 2)x log a) 

the function 0 has no points of inflection and so has at most two fixed points. 
It is clear that 

(j)̂ (0) < <J>»(1) < (})n+1(0), (n = 1, 2, . . . ) , 

and so convergence occurs if and only if cj) has at least one fixed point, in 
which case cj) has exactly one fixed point o such that |cj)'(c) | < 1. 

Figure 2 

If c() has no fixed points, then we clearly have 

cj)n(0) -> °°  and (J)n(l) -* °°, (n -> °°). 

Next we assume that 0 < a, 2? < 1. Once again <j> is increasing, but now it 
has one point of inflection, and so there may be one, two, or three fixed 
points. For n = 1, 2, ..., we have 

(f>n(0) < c))n+1(0) < <pn+l(V) < <(>"(1), 
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and 

lim cf)n(0) = lim (})n(l) 

is true if and only if (j) has exactly one fixed point c. The condition 
< 1 will then automatically be satisfied„ 

(5) 

I*'(c) I 

With more than one fixed point, as in Figure 3, both the limits in (5) exist, 
but they are not equal. This is an example of what Creutz and Sternheimer call 
"dual convergence." 

Since the sequence a, ab
9 a^3 \ . . . is convergent if and only if the se-

quence b, ba, b^ab\ ... is convergent, the cases 0<a<l<2? and 0<2?<l<a are 
equivalent. We may assume then, finally, that 0<a<l<2?. In this case, (j) is 
decreasing and has a unique fixed point o, 
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There are now four monotonic subsequences of interest. Indeed, for n = 1, 
2, ..., we have 

>2w"1(i) < * 2 n ( 0 ) < (j)2^+1(i) < e < cj)2n+1(o) < cj)2n(i) < c p - H o ) , (6) 

which is easily verified by induction, since cj)2 = <jx?<j> is increasing and has a 
fixed point at x = e. If |(|)f(<2)| > 1, then no sequence of the form §n(xQ) , 
n = 1, 2, ..., x0 > 1, can converge to cs and so in this case we have another 
(but slightly different) example of dual convergence. 

To prove that convergence does occur when ]<f>'(<2) | ^ 1, it is enough to show 
that (J)2 has in this case only one fixed point, namely c, since this would imply 
that 

lim $2n(0) = c = lim cj)2n(l). 
n + oo n+ oo 

We are, therefore, reduced to proving that, for 0 < x < c9 
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or 

ahX < (log(log a:/log a))/log fc. 

With log a = se_t, log 2? = t£_s, c = es, and or = (1 - u)es (cf. the proof of 
Lemma 1), this becomes, for 0 < u < 1, 

exp[-e(l - e'M*)] < 1 + -| log(l + ^ log(l - w)), (7) 

which we must show to be true when s < 0, £ > 0, and \st\ = |(f)f(c) | < 1. In 
fact, it is enough to prove (7) when s = -1/t, which we now do. 

Lemma 2 

For t > 0 and 0 < w < 1, we have 

e x p f - ^ f ^ ] < 1 + 1 log(l + t log ^ J . 

Proof: To prove the lemma, note that 

expr "t
g U 1 < exp|-| log(l + u£)l = (1 + wt)l7t, (t > 0, w > 0) , 

and so, since there is equality at u = 0, it is enough to show that 

^[(1 + „*)!/*]< ^ [l + I log(l + t log 3 - ^ ) ] , (t > 0, 0 < u < 1) , 

which is equivalent to 

1 + t log —!:— < il4" u t ) , (t > 0, 0 < u < 1). 
& 1 - u 1 - u 

Again there is equality at u = 0, and so it is enough to show that 

which is equivalent to 

(1 +M*)i/* < 1^-1 + * + U\ = T-L- + i ( T J — - l), (8) 
£ t(l - U) I - U t\l - U J 

(t > 0, 0 < u < 1). 

However, since 

(1 + ut)l,t < eu < T^— > it > 0, 0 < u < 1) , 1 - u 
the estimate (8) does in fact hold. This completes the proof of Lemma 2 and 
also that of our theorem. 

We now discuss the mapping x = se'*, y = te~s, \st\^x, which gives rise to 
the region in Figure 1. First, it is clear that, for k = 1, 2, 3, 4, the kth 

quadrant in the st-plane is mapped into the kth quadrant of the xzy-plane. Next 
we observe that the mapping is one-to-one for t > 0 and \st\ <1. This follows 
from Lemma 1, if we recall from the proof of the theorem that, for b > 1, the 
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function (j) has a fixed point c with |(j)f(c?)| < 1 if and only if this fixed point 
is unique. By symmetry, the mapping is also one-to-one for s > 0. 

It is easy to check with a little calculus that the boundary of the image 
of {(s, t) : \st\ < 1} takes the form shown in Figure 1 in the first, second, 
and fourth quadrants. In the third quadrant, however, the mapping is not one-
to-one and a more detailed discussion is required. 

If st = 1 (s, t < 0) and x - se^, y - te~s, then 

y < x < -es (s < -1) and x < y < -es (s > -1). (9) 

For instance, if s < -1, then the inequality 

x = se~l^s > s~l e~s = y 
is equivalent (on putting O = -s) to 

2 log o < o - 1/a, (a > 1), 

which is easily verified by differentiation. The maximum value of se~l^s for 
s < 0 occurs when s - -1, and so, for x < -g, the equation x = se~l^s has two 
solutions sl9 s2 with s2 < -1 < $i < 0. If s^x = 1 

^(a?) = t^"3! , ?/2te> = t2e"s2 , (x < -e), 

then 2/ , z/ are smooth functions in (-°°, -0) and, by (9), 

yz(x) < x < 2/•]_(#) < -e, (# < -e) . 

It is easy to check that 

lim y1{x) = -e = lim y 2{x) 
x+-e x-*~-e 

and, using the chain rule, that 

lim y !{x) = 1 = lim zy'O). 
x + . e

 U l x+-e * 2 

Hence, the image of st = 1 has a cusp at (-0, -e) . 

We now claim that the set 

{(#, z/) : a; < -e, 2/̂  (a?) < y < ^ W ) 

is covered twice by the mapping and that the remainder of the third quadrant is 
covered once. These facts could be verified directly, or we can deduce them 
from Lemma 1 as follows. 

Since, for 0 < a and b < 1, the maximum value of cf)f(x) is (-log b) Ie (this 
occurs when 1 + bx log a = 0) , we see that (f> has exactly one fixed point c (and 
(f)'(c) < 1) if 0 < a < 1 and e~e < b < 1. This means, by Lemma 1, that 
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{(x, y) : -<*> < x < 0, -e < y < 0} 
is covered exactly once. 

If 0 < b < e~e , however, then there are numbers ax and a2 with 0 < a1 < a2 

< £~e such that 

i/xClog ax) = log 2? = 2/2(log ̂ 2>* 

and then the corresponding functions 

(j>1(a;) = a^x and (J)2(x) = a%x 

each has a fixed point with derivative 1 (see the proof of Lemma 1). Since 
(j)(#) = ah* is strictly monotonic in a when b3 x axe fixed, we see that for all 
a E [a19 a 2], the function cf) has two fixed points c such that (f>'(c) < 1. If 
a £ [a± a 2], however, the function (f> has only one such fixed point. By Lemma 
1, this establishes the claim. 
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