A NOTE ON BINOMIAL COEFFICIENTS AND CHEBYSHEV POLYNOMIALS

MAURO BOSCAROL
Università di Trento, Italy
(Submitted December 1983)

In [1] the author gave a demonstration in a slightly different notation of the following property of binomial coefficients: for every integer n, and $k<n$,

$$
\begin{equation*}
\sum_{j=0}^{k} 2^{-(n-k+j-1)}\binom{n-k+j-1}{j}+\sum_{j=0}^{n-k-1} 2^{-(k+j)}\binom{k+j}{j}=2 \tag{1}
\end{equation*}
$$

In this note we shall be concerned with an application of (1) to a problem involving Chebyshev polynomials of the first kind. Remember that the Chebyshev polynomial of the first kind $T_{n}(x)$ is defined in $-1 \leqslant x \leqslant 1$ as
$T_{n}(x)=\cos n(\operatorname{arcos} x)$.
For the sake of convenience we sometimes use the notation T_{n} instead of $T_{n}(x)$. We shall use the following two identities (see, e.g., [2] for the proofs):
(a) for every integer n,

$$
\begin{equation*}
T_{-n}=T_{n} \tag{2}
\end{equation*}
$$

(b) for $r, n>0$,
$x^{r} T_{n}(x)=2^{-r} \sum_{i=0}^{r}\binom{r}{i} T_{n-r+2 i}(x)$.
Proposition 1
For every integer $n \geqslant 1$, we have
$\sum_{i=0}^{n-1} x^{i} T_{n-i-1}=\sum_{i=0}^{n-1} T_{n-2 i-1}$.
Proof: Using (3), we can write the summation on the left as
$S=\sum_{i=0}^{n-1} 2^{-i} \sum_{j=0}^{i}\binom{i}{j} T_{n-2(i-j)-1}$
or, changing indexes,
$S_{n}=\sum_{i=0}^{n-1} \sum_{j=0}^{i} 2^{-(n-i+j-1)}\binom{n-i+j-1}{j} T_{-n+2 i+1}$.
We denote by C_{i} the term involving $T_{-n+2 i+1}$ in (5), $i=0, \ldots, n-1$. Then
$S=C_{0}+C_{1}+C_{2}+\cdots+C_{n-1}$
and also, in reverse order,
$S=C_{n-1}+C_{n-2}+\cdots+C_{1}+C_{0}$.

Adding (6) and (7) term by term, we can write

$$
\begin{align*}
2 S & =\left(C_{0}+C_{n-1}\right)+\left(C_{1}+C_{n-2}\right)+\cdots+\left(C_{n-1}+C_{0}\right) \\
& =\sum_{k=0}^{n-1}\left(C_{k}+C_{n-k-1}\right) . \tag{8}
\end{align*}
$$

Now, from (5),

$$
\begin{aligned}
& C_{k}=\sum_{j=0}^{k} 2^{-(n-k+j-1)}\binom{n-k+j-1}{j}_{-n+2 k+1} \\
& C_{n-k-1}=\sum_{j=0}^{n-k-1} 2^{-(k+j)}\binom{k+j}{j} T_{n-2 k-1} .
\end{aligned}
$$

Because of (2), $T_{n-2 k-1}=T_{-n+2 k+1}$. Therefore,

$$
\begin{aligned}
C_{k}+C_{n-k-1}=[& \sum_{j=0}^{k} 2^{-(n-k+j-1)}\binom{n-k+j-1}{1} \\
& \left.+\sum_{j=0}^{n-k-1} 2^{-(k+j)}\binom{k+j}{j}\right] T_{n-2 k-1} .
\end{aligned}
$$

But the coefficient of $T_{n-2 k-1}$ in the above formula is just the expression (1), which is always equal to 2 , regardless of the values of n and k. Hence, we can rewrite (8) as

$$
2 S=\sum_{k=0}^{n-1} 2 T_{n-2 k-1}
$$

and the proposition is thus proved.
Corollary 1
For every integer $n \geqslant 1$,
$T_{n}^{\prime}=n \sum_{i=0}^{n-1} T_{n-2 i-1}=n \sum_{i=0}^{n-1} x^{i} T_{n-i-1}$,
where T_{n}^{\prime} is the first derivative of T_{n} with respect to x.
Proof: Let $f=\operatorname{arcos} x$ and $\omega=e^{i f}=\cos f+i \sin f$. Then, from the definition of $T_{n}(x)$,

$$
\begin{aligned}
\frac{T_{n}^{\prime}(x)}{n} & =\frac{\sin n f}{\sin f}=\frac{\omega^{n}-\omega^{-n}}{\omega-\omega^{-1}}=\frac{\omega^{n-1}\left(1-\omega^{-2 n}\right)}{1-\omega^{-2}}=\sum_{i=0}^{n-1} \omega^{n-2 i-1} \\
& =\frac{1}{2} \sum_{i=0}^{n-1}\left(\omega^{n-2 i-1}+\omega^{-n+2 i+1}\right)=\sum_{i=0}^{n-1} \cos (n-2 i-1) f=\sum_{i=0}^{n-1} T_{n-2 i-1}
\end{aligned}
$$

and from Proposition 1, the conclusion follows.
A proof of the first equality of (9) is found also in [3].

Remark: Remember that the Chebyshev polynomial of the second kind $U_{n}(x)$ is defined as
$U_{n}(f)=\frac{\sin (n+1) f}{\sin f}$ (notation as in the proof of Corollary 1).
From Corollary 1 and the known result $T_{n}^{\prime}=n U_{n-1}$, it follows that
$U_{n}=\sum_{i=0}^{n} T_{n-2 i}$.

ACKNOWLEDGMENT

The author wishes to acknowledge and thank the referee for his useful remarks and thoughtful criticism of the material and terminology in this paper. I am also grateful to Professor Peter Henrici for pointing out a simplification of my previous demonstration of (9).

REFERENCES

1. M. Boscarol. "A Property of Binomial Coefficients." The Fibonacci Quarterly 20, no. 3 (1982):249-51.
2. L. Fox \& B. Parker. Chebyshev Polynomials in Numerical Analysis. Oxford: Oxford University Press, 1968 (rpt. with correction, 1972).
3. L. Gatteschi. "Funzioni speciali." UTET, 1973.
