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1. INTRODUCTION 

In classical usage the fundamental and primordial second-order recurrences 
are those of Fibonacci and Lucas, {Fn} and {Ln}, defined by the linear homoge-
neous recurrence relation 

V« = Un-1 + Un-2> n > 2. (1-D 

with initial conditions F1 = 1, F2 = 1, and L1 - 1, L2 = 3. They are usually 
generalized by altering the recurrence relation or the initial conditions as 
described by Horadam [4]. 

There have been many generalizations of the Fibonacci numbers (cf. Bergum & 
Hoggatt [1] and Shannon [11]), but fewer published attempts to generalize the 
corresponding Lucas numbers, though those of Hoggatt and Bicknell-Johnson (cf. 
[4]) are notable exceptions. 

We believe that the following exposition is a useful addition to the liter-
ature because, unlike other papers, which concentrate on particular properties, 
we focus on the unexpected structure of the generalized recurrence relation. 
This complements the existing literature because the solution of our recurrence 
relation is the one used by the authors to develop various properties of these 
sequences. The corresponding approach for the Fibonacci numbers has been ap-
plied by Hock and McQuiston [3]. From the simple form of the recurrence rela-
tion as revealed here, we specify some particular generalized sequences and two 
special properties that will be of use to future researchers of the abritrary-
order recurrences who utilize the coefficients of the recurrence relation. 

We choose here to generalize the Lucas sequence by considering the rth-
(arbitrary)-order linear recurrence relation 

V™ = V^r + l + ^n-r* n > r > 1 , (1.2) 

and initial conditions V^ = 0 if 0 < n < r - 1, vr-i = r ~ * a n d VQ = Pe T h e 

notation is due to Williams [12] and has been used since then by several authors 
in studying rth-order recurrences. 

Thus, {fjj2)} E {Ln}9 and the accompanying table displays the first 16 terms 
of {^r)}'for r = 2, 3, 4, 5, 6. 

Table 1. Generalized Lucas Numbers for n > 0 
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47 
10 
4 
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76 
12 
3 
9 
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17 
10 
5 
5 
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22 
11 
0 
11 
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322 
29 
7 
4 
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521 
39 
13 
13 
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14 

843 
51 
21 
14 
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1364 
68 
18 
5 
5 

16 

2207 
90 
20 
4 
16 
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For example, from the table, we have that 

W = ̂ 3 + e \ or 20 = „<*> = v% + W<\> =13 + 7. 

We propose to consider some of the properties of {v^} that arise from the in-
teresting fact that all but three of the coefficients in the recurrence rela-
tion are zero. 

2. GENERAL TERMS 

The auxiliary equation associated with the recurrence relation (1.2) is 

x* - x - 1 = 0, (2.1) 

which we assume has distinct roots, ctj > j = 1, 2, ..., r. In fact, v$p is (in 
the terminology of Macmahon [8]) the homogeneous product sum of weight n of the 
quantities CLj, It is the sum of a number of symmetric functions formed from a 
partition of n as elaborated in Shannon [10]. The first three cases are 

v™ = p2
rl + p P 2 =E«! +2X^ 

in which Prm is (-1)OT+1 times the sum of the a3- taken m at a time as in the 
theory of equations. More generally, 

ZX=n i = l 

so that since Prm = 0 except for Prr and Pp p_19 which are unity, we have 

,(*•) £ < for n = 1, 2, ..., r. (2.2) 

Then, if we assume the result (2.2) is true for n = k - 1: 

Z ^ = Vir) + D « 
£ k-r+ I k- r 

= E(a}"r+1+ «}"r) = t«J"r(o}- + 1) = £ aj-'aj = fa*. 
J = 1 J = 1 J = 1 J = 1 

By the Principle of Mathematical Induction, we get 

v (r) E a". (2.3) 

For example, 

z/2) = (1.61803)* + (-0.61803)*, 

the well-known result for the Lucas numbers. 
Similarly, for instance, with i1 - -1, 

v(3) = (1.32472)* + (-0.66236 + 0.07165-z:)* + (-0.66236 - 0.07165i)*, 
and 

V{h) = (1 .22075)* + ( - 0 . 7 2 4 5 ) * + ( -0 .2481 + 1 . 3 4 U ) n + ( -0 .2481 - 1 . 0 3 4 1 i ) n . 
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3. GENERAL PROPERTIES 

Among the various properties that can be investigated, we focus on two that 
follow directly from (2.1) and (1.2). 

For odd values of p, (2.1) has the real solution 

a = (1 +a) 1 / p 

which leads to the approximation 

a = P/(P - 1); (3.1) 

for even values of p, we get 

a = ±(1 + a/p) 

or 

a = r/(r ± 1). (3.2) 

These are the initial approximate values which, by repeated iterations, converge 
to the real roots. Furthermore, we observe in (3.1) and (3.2) that as r in-
creases, a approaches unity, which can be confirmed readily with a few numeri-
cal examples. 

For notational convenience, we assume that un exists for n < 0. Then, for 
any j E Z+> 

v?-io(ty:i^+l. (3.3) 
Proof: We use induction on j. When j = 1, (3.3) reduces to the recurrence 

relation (1.2). Suppose the result is true for j = 2, 3, ..., fc - 1. Then 

f (k\ M m
 kj*/k - 1\ (P) +

ky1(k ~ 1)„W 
i, — 0 i> — u i = ± 

= W (k - l\ (P) +kY(k - l) <p> 
r^n\ i )Vn-r-r(k-l) + i A* \ i ) Vn- r- r(k- 1) + i+ 1 ^ = u ^ = 0 

= ^n-r + Vn-r+l = Vn > a S required. 

k. A DIVISIBILITY RESULT 

If we refer to Table 1 again, we observe that 5 divides i^o* ̂ l^' a n d yio» 
7 divides V^9

 v(±k» an<^ v*il> etc* M ° r e generally, this can be expressed as 

P\vprr+n) for n > 1, r > 1, and prime p > 2. (4.1) 

Proof: < / n ) = E n a f 

£ ((a,- + l)/a?)p from (2.1) 
,7=1 

]" + n P 

;?, &GK .-p-fc 

j = 1 £ = 0 

p + ft 

Y] (a~P + oC2 p) + m u l t i p l e s of p . 
J - l 
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This follows from Hardy and Wright [2, p. 64] and the fact that 

. . r+ n -k 

J-l 
r-rP + n -V- k 

is an integer because n.= 1a. 

r+ n 
Z (a/ + a'2? ). 

The polynomial with zeros 1/a- is 

±1. It remains to show that 

fix) = xr+n + x1 1. (4.2) 

From the theory of equations, we have that 

r+ n 
fr(x)/f(x) = 'E l/(x - Xj) where x- = 1/a^ 

r i n l / #? V"1 

= E "I1 " —) Wlth Xi < X' 
Thus 

fr(x)/nx) =rjf ±xpxm+i= j:vir+n)/xm+l' 
j = 1 m = 0 rn=Q 

Nlow, fr(x) = ( r + n)x !>+ n- l + (r + n - l)x r+n-2 and, by d iv i s ion , 

fr(x)/f(x) = ( r + n ) ^ ' 1 - J T 2 + 

(4.3) 

(4.4) 

Since p i s odd and 2p i s even, we get from (4.3) and (4.4) tha t i f £ • *a.p 

- 1 , then £^ = "oG2p = +1, and vice versa . Hence, 
r+ n 

0 = J] (ajp + cC2 p), as required. 
j-i 

CONCLUDING COMMENTS 

,(**) The consideration of v\ for n < 0 suggests the use of a result from Polya 
and Szego [9] to express the general term on the negative side of the sequence. 
Thus, for n < 0, 

[m/r] 

v{r) = E lm~ (r - l)k\, ,,m-rk 
kT*0 m - (r - l)k\ k )(-ir 

in which m ~ -n, and [•] represents the greatest integer function. 
The first few values are displayed in Table 2. 

Table 2. Generalized Lucas Numbers for n < 0 

2^^^/^ 

2 
3 
4 

- 9 

-76 
-7 

-19 

- 8 

47 
5 

13 

-7 

-29 
- 1 
- 8 

- 6 

18 
-2 

7 

- 5 

-11 
4 

-6 

-4 

7 
- 3 

5 

- 3 

- 4 
2 

- 1 

-2 

3 
1 
1 

- 1 

- 1 
- 1 
- 1 

1985] 123 



SOME GENERALIZED LUCAS SEQUENCES 

For example, when r = 2, we get the known result of Lucas [7]: 

[n/2] 

k = 0 

The recurrence relation for (5.1) is (with m = -n) 

[n/2] . - . 

so that these v^ = (~l)mAm of Hock and McQuistan [3] who apply this sequence 
to a problem on the occupation statistics of lattice spaces in relation to a 
number of physical phenomena. 

Other extensions can be found by developing an associated generalized Fibo-
nacci sequence {u^}, related to {v^} by, for instance 

(p) = y- (~1^ zSv) u(r) 

vn n Ls V U a ' B ' U a k > 

in which y(n) indicates summation over all the compositions (a1, a2, ..., ak) 
of n as in Shannon [11]. For example, when r = 2, 

£ i = 1 = A . 

£ 2 = 3 = " | / l A +T/2 - "I + 4. 
L

3 - 4 - - |AA - 4AA + TA + | A A A = -3 - 3 + 9 +1, 
where {/n} is the sequence of Fibonacci numbers that satisfy (1.1) with initial 
conditions f1=l9f2=2. The use of the lower-case letters for notational 
convenience (f - ^n + i^ ^s n o t n e w (c^ • E6'])» 

Thanks are due to Lambert Wilson [13] for the development of Table 1. 
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